DESIGN CON 2014

JANUARY 28-31, 2014 SANTA CLARA CONVENTION CENTER

Dielectric and Conductor Roughness Model Identification for Successful PCB and Packaging

Interconnect Design up to 50 GHz

Dr. Yuriy Shlepnev Simberian Inc.

Outline

- Introduction
- Elements of de-compositional electromagnetic analysis
- Dielectric and conductor roughness model identification
 - Theory of identification with GMS-parameters
 - Demo and practical examples
- Pre- and post-layout analysis with broadband models
- Conclusion

Introduction

- Data links running at bitrates 10-50 Gbps and beyond are becoming the mainstream in the communication and other electronic systems
- Why is design of PCB and packaging interconnects for such systems is a challenging problem?
 - Extremely broad frequency bandwidth from DC to 20-50 GHz
 - No frequency-continuous dielectric models available from manufactures
 - No conductor roughness models available from manufacturers
 - Boards are routed in old-style based on rules and approximate models
 - Boards are not manufactured as designed variations and manipulations by manufacturers
- Is it possible to design and build copper interconnects with analysis to measurement correlation from DC to 20-50 GHz systematically?
 - Only if some conditions are satisfied

Decompositional analysis of a link path

See details in App. Notes #2013_02, 2013_03 and 2013_05 at www.simberian.com

1/3/2014

Material models

- The largest part of interconnects are transmission line segments
- Models for transmission lines are usually constructed with a quasi-static or electromagnetic field solvers
- Accuracy of transmission line models is mostly defined by availability of broadband dielectric and conductor roughness models
- This is one of the most important elements for design success

Broadband material models

• Common PCB dielectric models:

Wideband Debye (aka Djordjevic-Sarkar):

$$\varepsilon(f) = \varepsilon_r(\infty) + \frac{\varepsilon_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m^2} + if}{10^{m^1} + if}\right]$$

Continuous-spectrum model Requires specification of DK and LT at one frequency point (2 parameters)

Requires specification of value at infinity and poles/residues or DK and LT at multiple frequency points (more than 2 parameters)

• Common conductor surface roughness models:

Modified Hammerstad (2 parameters):

Multi-pole Debye:

Huray snowball (1-ball, 2 parameters):

$$K_{rh} = 1 + \left(\frac{2}{\pi} \cdot \arctan\left[1.4\left(\frac{\Delta}{\delta}\right)^2\right]\right) \cdot \left(RF - 1\right)$$

 $K_{rhu} = 1 + \left(\frac{N \cdot 4\pi \cdot r^2}{A_{har}}\right) / \left(1 + \frac{\delta}{r} + \frac{\delta^2}{2 \cdot r^2}\right)$

Parameters for the models are not available and must be identified

 $\mathcal{E}(f) = \mathcal{E}(\infty) + \sum_{n=1}^{N} \frac{\Delta \mathcal{E}_n}{1 + i \underline{f}}$

00

© 2014 Simberian Inc.

Material model identification techniques

• For test structures ...

- Transmission line segments
- Patch or parallel-plate resonators
- Resonators coupled or connected to a transmission line

… take measurements …

- S-parameters measured with VNA
- TDR/TDT measurements
- Combination of both

... and correlate with a numerical model

- Analytical or closed-form
- Static or quasi-static field solvers
- 3D full-wave solvers

Measure S-parameters of two line segments

• S1 and T1 for line with length L1

• S2 and T2 for line with length L2

T1 and T2 matrices are scattering T-parameters (computed directly from S-parameters)

0-0

DESIGNCON[®] 2014

Extract Generalized Modal T-parameters (GMT) and then GMS-Parameters (1-conductor case)

9

0-0

Extract Generalized Modal T-parameters (GMT) and then GMS-Parameters (2-conductor case)

$$GMT = eigenvals (T2 \cdot T1^{-1}) \quad GMT = \begin{bmatrix} I_{11} & 0 & 0 & 0 & 0 \\ 0 & T_{22} & 0 & 0 \\ 0 & 0 & T_{11}^{-1} & 0 \\ 0 & 0 & 0 & T_{22}^{-1} \end{bmatrix} \implies GMSm = \begin{bmatrix} 0 & 0 & I_{11} & 0 \\ 0 & 0 & 0 & T_{22} \\ T_{11} & 0 & 0 & 0 \\ 0 & T_{22} & 0 & 0 \end{bmatrix}$$

0-0

Identifying dielectrics by matching GMS-parameters (1-conductor case)

• Solve Maxwell's equations for 1-conductor line:

$$GMSc = \begin{bmatrix} 0 & \exp(-\Gamma \cdot dL) \\ \exp(-\Gamma \cdot dL) & 0 \end{bmatrix}$$

• Match to measured data: Only 1 complex function!

$$GMSm = \begin{bmatrix} 0 & T_{11} \\ T_{11} & 0 \end{bmatrix}$$

- Measured GMS-parameters of the segment can be matched with the calculated GMS-parameters for material parameters identification
- Phase or group delay can be used to identify DK and insertion loss to identify LT or conductor roughness!

0-0

Identifying dielectrics by matching GMS-parameters (2-conductor case)

• Solve Maxwell's equations for 2-conductor line:

$$GMSc = \begin{bmatrix} 0 & 0 & \exp(-\Gamma_{1} \cdot dL) & 0 \\ 0 & 0 & 0 & \exp(-\Gamma_{2} \cdot dL) \\ \exp(-\Gamma_{1} \cdot dL) & 0 & 0 & 0 \\ 0 & \exp(-\Gamma_{2} \cdot dL) & 0 & 0 \end{bmatrix}$$

$$H = \begin{bmatrix} 0 & 0 & T_{11} & 0 \\ 0 & T_{22} & 0 & 0 \end{bmatrix}$$

$$Match to measured data: \quad \bigcirc Only 2 complex functions!$$

- Measured GMS-parameters of the segment can be directly fitted with the calculated GMS-parameters for material parameters identification
- Two functions can be used to identify 2 materials!

30.

18 Nov 2010, 09:53:08, Simberian Inc.

dL

Material Model Identification with GMS-Parameters

Simberian's USA patent #8577632 and patent pending #14/045,392

Demo of dielectric identification in Simbeor

From Isola FR408 specifications

	A. @ 100 MHz (HP4285A)	3.69
Dk, Permittivity	B. @ 1 GHz (HP4291A)	3.66
(Laminate & prepreg as laminated)	C. @ 2 GHz (Bereskin Stripline)	3.67
Tested at 56% resin	D. @ 5 GHz (Bereskin Stripline)	3.66
	E. @ 10 GHz (Bereskin Stripline)	3.65
	A. @ 100 MHz (HP4285A)	0.0094
Df, Loss Tangent	B. @ 1 GHz (HP4291A)	0.0117
(Laminate & prepreg as laminated)	C. @ 2 GHz (Bereskin Stripline)	0.0120
Tested at 56% resin	D. @ 5 GHz (Bereskin Stripline)	0.0127
	E. @ 10 GHz (Bereskin Stripline)	0.0125

10.5-11 mil wide strip lines, Use measured S-parameters for 2 segments (2 inch and 8 inch) CMP-28 validation board designed and investigated by Wild River Technology http://wildrivertech.com/

Measured S-parameters for 2 and 8 inch segments

-0

GMS-parameters computed from measured S-parameters

Reflection in generalized modal S-parameters is exactly zero – makes material model identification much easier!

17

Results with available material models

The original model produces considerably lower insertion losses (GMS IL) above 5 GHz and smaller group delay (GMS GD) at all frequencies:

Two options: 1) Increase Dk and LT in the dielectric model; 2) Increase Dk in dielectric model and model conductor roughness

Option 1: Increase Dk and LT in dielectric model (no conductor roughness)

Good match with: Dk=3.83 (4.6% increase), LT=0.0138 (18% increase), Wideband Debye model

Good match, but what if conductors are actually rough?

© 2014 Simberian Inc.

DESIGNCON[®] 2014

Option 2: Increase Dk and model conductor roughness (proper modeling)

Dielectric: Dk=3.8 (3.8% increase), LT=0.0117 (no change), Wideband Debye model Conductor: Modified Hammerstadt model with SR=0.32 um, RF=3.3

Excellent match and proper dispersion and loss separation! This model is expected to work for strips with different widths

1/3/2014

Can we use models for another cross-section?

• Differential 6 mil strips, 7.5 mil distance

GD is close, but the loss is different:

DESIGNCON[®] 2014

Examples of practical material models identification with coupled lines

• Wideband Debye (WD) with dielectric and roughness losses:

Model Parameters	WD Die	lectric	WD Loss	Tangent		composite/resin
Board Types	Consta	nt @ 1 GHz	@ 1 GHz	:		15 10
FR408HR with RTF copper, inhomogeneous	3.95/3.	5 (3.66)	0.01/0.0	12 (0.0117)	Z	
FR408HR with RTF copper	3.76	(3.66)	0.012	(0.0117)		
Megtron-6 with HVLP copper	3.69	(3.6)	0.0065	(0.002)		19 Anno Anno Anno Anno Anno Anno Anno Ann
Megtron-6 with RTF copper	3.75	(3.6)	0.0083	(0.002)		
Nelco N4000-13EPSI with RTF copper	3.425	(3.4)	0.011	(0.008)		20 Die 2013, 000°-01, Salassie ko. 20 Voor Hubb (per

 Wideband Debye (WD) dielectric with loss tangent from specs and Modified Hammerstad model (MH) for conductor roughness losses:

Model Parameters	WD Dielectric	WD Loss Tangent	MH Roughness	MH Roughness
Board Types	Constant @ 1 GHz	@ 1 GHz	(SR, rms) (um)	Factor (RF)
Megtron-6 with HVLP copper	3.64 (3.6)	0.002	0.38	3.15
Megtron-6 with RTF copper	3.72 (3.6)	0.002	0.37	4
Nelco N4000-13EPSI with RTF copper	3.425 (3.4)	0.008	0.49	2.3

Values from specifications are provided in brackets for comparison

See details at W. Beyene at all, Lessons learned: How to Make Predictable PCB Interconnects for Data Rates of 50 Gbps and Beyond, DesignCon2014

The GMS-parameters technique is the simplest possible

- Needs measurements for 2 t-lines with any geometry of crosssection and transitions
 - No extraction of propagation constants (Gamma) from measured data (difficult, error-prone)
 - No de-embedding of connectors and launches (difficult, error-prone)
- Needs the simplest numerical model
 - Requires computation of only propagation constants
 - No 3D electromagnetic models of the transitions
- Minimal number of smooth complex functions to match
 - One parameter for single and two parameters for differential
 - All reflection and modal transformation parameters are exactly zeroes

Summary on material models

- Broadband dielectric and conductor roughness models must be identified or verified
- Proper separation of loss and dispersion effects between dielectric and conductor models is very important, but not easy task
- Without proper roughness model, dielectric models is dependent on strip width
 - If strip width is changed, difference in insertion loss predicted by different models may have up to 20-30% for low-loss dielectrics
 - See examples for Panasonic Megtron 6 and Nelco 4000 EP at "Which one is better?..." presentation and "Elements of decompositional analysis..." tutorial from DesignCon 2013 (available at <u>www.simberian.com</u>)
- In addition, PCB materials are composed of glass fiber and resin and have layered structure
 - Different dielectric models for composite and resin layers may be required
 - Vertical and horizontal components of dielectric constant may be different (anisotropy)
 - Periodic inhomogeneity may cause skew and resonances (fiber-weave effect)
 - All that can be modelled in Simbeor software

Interconnect analysis tasks

- Pre-layout tasks
 - Synthesize geometry for t-lines with target impedance
 - Synthesize geometry for transitions with minimal reflection and localization over the target frequency range
 - Evaluate transitions impact on compliance metrics
 - Evaluate impact of manufacturing tolerances
- Post-layout tasks
 - Modify board design to fit manufactured
 - Identify geometry of discontinuities and t-lines
 - Build models and simulate

Simbeor is synthesis, full-wave analysis and macro-modeling tool for interconnects

Simbeor enables **geometry synthesis** for controlled impedance transmission lines and via-holes, has **geometry import** and selection capabilities, and **3D geometry editor**

Simbeor is one-stop solution for passive interconnect pre and post-layout analyses with advanced electromagnetic models, for macro-modeling and material parameters identification tasks

Demo of pre-layout analysis in Simbeor

- 1) Synthesize transmission line line model with the target impedance
- 2) Synthesize geometry of via transition through the board
- Simulate simple link path with one or two via transitions
- 4) Plot S-parameters, TDR response or eye diagram
- 5) Output BB SPICE or Touchstone model

Stackup and materials from CMP-28 Wild River Technology http://wildrivertech.com/

DESIGN CON[®] 2014

Demo of post-layout analysis in Simbeor

- Import or convert board design into Board Analyzer
- Select nets and create Network Selector (NS) for analysis
- 3) Optionally adjust geometry extraction, signal, solvers and accuracy options
- 4) Break selected nets into discontinuities and tline segments
- 5) Generate Linear Network (LN) and 3D Circuits and run analysis
- 6) Plot S-parameters, TDR or eye diagram
- 7) Output BB SPICE or Touchstone models

CMP-28/32 validation board from Wild River Technology http://wildrivertech.com/

Simbeor use case scenarios

Stand-alone

- Material parameters identification
- S-parameters model quality assurance and macro-modeling
- S-parameter and compliance analyses of links without Tx & Rx
- With a system-level tool (HSPICE, ADS, ...)
 - Building advanced full-wave models of interconnects
 - S-parameters model quality assurance and macro-modeling
- With HFSS or CST Simbeor compliments with
 - Analysis of t-lines with advanced dielectric and conductor roughness models
 - Analysis of planar discontinuities
 - S-parameters model quality assurance and macro-modeling
 - S-parameter and compliance analyses of links without Tx & Rx

Why use Simbeor?

- 1. Algorithms are validated with measurements up to 50 GHz!
- 2. Unique algorithm for material models identification
- 3. Advanced models of transmission lines
- 4. Fast via-hole and transmission line geometry synthesis
- 5. Fast and accurate pre- and post-layout de-compositional EM analysis
- 6. Quick compliance analysis in frequency domain
- 7. Unique quality assurance for Touchstone models
- 8. Unique macro-modeling capabilities for consistent FD and TD analyses
- 9. Easy-to-learn and easy-to-use

10.Simbeor is #1 in price-performance (accuracy and productivity)

DESIGN

References

(available at http://www.simberian.com/)

- Y. Shlepnev, A. Neves, T. Dagostino, S. McMorrow, Practical identification of dispersive dielectric models with generalized modal S-parameters for analysis of interconnects in 6-100 Gb/s applications, DesignCon 2010 (App Note #2010_01)
- Sensitivity of PCB Material Identification with GMS-Parameters to Variations in Test Fixtures, Simberian App Note #2010_03
- Material Identification With GMS-Parameters of Coupled Lines, Simberian App Note #2010_04
- J. Bell, S. McMorrow, M. Miller, A. P. Neves, Y. Shlepnev, Unified Methodology of 3D-EM/Channel Simulation/Robust Jitter Decomposition, DesignCon2011, (App Note #2011_02)
- D. Dunham, J. Lee, S. McMorrow, Y. Shlepnev, 2.4mm Design/Optimization with 50 GHz Material Characterization, DesignCon2011 (App Note #2011_03)
- Y. Shlepnev, S. McMorrow, Nickel characterization for interconnect analysis. Proc. of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, August, 2011, p. 524-529.
- Y. Shlepnev, C. Nwachukwu, Roughness characterization for interconnect analysis. Proc. of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, August, 2011, p. 518-523
- Y. Shlepnev, C. Nwachukwu, Practical methodology for analyzing the effect of conductor roughness on signal losses and dispersion in interconnects, DesignCon2012, Feb. 1st, 2012, Santa Clara, CA.

Contacts and resources

- Yuriy Shlepnev, Simberian Inc., Booth #525 <u>shlepnev@simberian.com</u> Tel: 206-409-2368
- Simberian web site and contacts www.simberian.com
- Webinars on material identification de-compositional analysis, S-parameters quality and <u>http://www.simberian.com/Webinars.php</u>
- Demo-videos <u>http://www.simberian.com/ScreenCasts.php</u>
- App notes <u>http://www.simberian.com/AppNotes.php</u>
- Technical papers http://kb.simberian.com/Publications.php
- Presentations <u>http://kb.simberian.com/Presentations.php</u>
- Download Simbeor[®] from <u>www.simberian.com</u> and try it for 15 days

