

Comparison of Interconnect Model Validation with FSV and SPS Metrics

Alistair Duffy, De Montfort University Gang Zhang, Harbin Institute of Technology Yuriy Shlepnev, Simberian Inc.

IBIS Virtual Summit with DesignCon 2021, San Jose, California August 19, 2021

IBIS Summit 2021

Introduction

- Any interconnect design process must include analysis to measurement validation step
- The validation requires formal and automated comparison of simulated and measured S-parameters
 - It can be done either with Feature Selective Validation (FSV)
 - A.P. Duffy, G. Zhang, FSV: State of the Art and Current Research Fronts, IEEE Electromagnetic Compatibility Magazine, Volume 9, #3, 2020, p. 55-62.
 - Or with recently introduced S-Parameter Similarity (SPS) metric
 - Y. Shlepnev "Evaluation of S-Parameters Similarity with Modified Hausdorff Distance", May 20, 2021 at <u>http://arxiv.org/abs/2105.10057</u>
 - Y. Shlepnev, S-Parameters Similarity Metric, Simberian Inc., App note #2021_05, May 24, 2021. available at <u>https://www.simberian.com/AppNotes.php</u>

□ This presentation is the first attempt to compare two metrics...

S-Parameters Similarity (SPS) Metric

3D Spiral Plots of 2 S-parameters (Real-Imaginary-Frequency or RIF)

Modified Housdorff Distance(MHD) for S-Matrix Element *i*,*j*

$$d_{MH}\left(sa,sb\right) = \frac{1}{K} \sum_{k=1}^{K} d_{rif}\left(sa^{k},sb\right)$$

MHD for S-Matrix NxN:

 $d_{MH}(SA, SB) = \max\left[d_{MH}(sa_{i,j}, sb_{i,j}), i, j = 1, ..., N\right]$

S-Parameters Similarity (SPS) Metrics:

 $SPS(sa_{i,j}, sb_{i,j}) = 100 \cdot \max\left(1 - d_{MH}(sa_{i,j}, sb_{i,j}), 0\right)\%$

^{0.5} SPS (SA, SB) = min (SPS ($sa_{i,j}, sb_{i,j}$), i, j = 1, ..., N)%

Frequency axis is scaled as Frq/fnorm for the distance measurement

8/19/2021

IBIS Summit 2021

Analysis to Measurement SPS for CMP-28

Designed and Measured by <u>Wild River Technology</u> Modeled with Simbeor <u>Guide to CMP-28/32</u> <u>Simbeor Kit</u>, CMP-28 Rev. 4, Sept. 2014.

	Model	Measurement	SPS_SE	SPS_SE	SPS_SE
			10 GHz	35 GHz	50 GHz
1	SL_SE_2inch_J6J5	cmp28_strpl_2in_50ohm_p1J6_p2J5_s2p	97.1513	92.5639	84.677
2	SL_SE_8inch_J7J8	cmp28_strpl_8inch_p1J7_p2J8_s2p	97.8176	91.8262	80.9387
3	SL_SE_Beatty_250hm_J28J27	cmp28_strpl_Beatty_25ohm_p1J28_p2J27_s2p	98.3164	91.7525	81.1544
4	SL_SE_Resonator_J23J24	cmp28_strpl_resonator_p1J23_p2J24_s2p	98.5621	92.8552	82.7012
5	SL_SE_Via_Capacitive_J18J17	cmp28_strpl_via_capacitive_p1J18_p2J17_s2p	94.9476	91.1739	82.8437
6	SL_SE_Via_Backdrilled_J14J13	cmp28_strpl_via_backdrilled_p1J14_p2J13_s2p	97.1172	90.8311	82.0804
7	SL_SE_2inch_Capacitive_J9J10	cmp28_strpl_2in_Capacitive_p1J10_p2J09_s2p	97.7805	93.0992	87.3275
8	SL_SE_2inch_Inductive_J11_J12	cmp28_strpl_2in_Inductive_p1J12_p2J11_s2p	97.8352	93.8351	87.8757
9	SL_DF_2inch	cmp28_strpl_diff_2inch_J39J40J35J36_s4p	95.9985	91.087	83.0354
10	SL_DF_6inch	cmp28_strpl_diff_6inch_J47J48J43J44_s4p	96.8208	93.0776	85.1746
11	MS_SE_2in_J1_J2	cmp28_mstrp_2in_p1J1_p2J2	97.9111	94.7303	91.8845
12	MS_SE_8in_J4_J3	cmp28_mstrp_8inch_p1J4_p2J3	97.6372	95.3771	91.645
13	MS_SE_Beatty_25Ohm_J25_J26	cmp28_mstrp_Beatty_25ohm_p1J25_p2J26	96.5268	93.3182	89.9407
14	MS_SE_Resonator_J21_J22	cmp28_mstrp_resonator_p1J21_p2J22	98.0708	94.1929	90.5811
15	MS_SE_GND_Voids_J74_J75	cmp28_gnd_voids_p1J74_p2J75	97.6512	88.4187	83.5582
16	MS_SE_GraduateCoplanar_J70_J69	cmp28_graduate_coplanar_p1J70_p2J69	97.6924	94.4118	91.4621
17	MS_SE_Via_Inductive_J15_J16	cmp28_mstrp_via_inductive_p1J15_p2J16	96.6664	93.596	90.0153
18	MS_SE_Via_Capasitive_J19_J20	cmp28_mstrp_via_capacitive_p1J19_p2J20	96.5088	93.969	90.1057
19	MS_SE_Via_Pathology_J65_J66	cmp28_via_pathology_p1J65_p2J66	97.2525	91.9582	88.486
20	MS_DF_2inch	cmp28_mstrp_diff_2inch_J38J37J34J33	95.4645	93.3429	90.407
21	MS_DF_6inch	cmp28_mstrp_diff_6inch_J46J45J42J41	95.5751	93.9318	90.9123
22	MS_DF_GND_Cutout	cmp28_mstrp_diff_gnd_cutout_J59J60J55J56	94.4506	91.4807	88.7113
23	MS_DF_Vias	cmp28_mstrp_diff_vias_J49J50J51J52	95.6808	91.6811	88.4878

Tires: [0, 80) Bad; [80, 90) Inconclusive; [90, 99) Acceptable; [99, 100] Good;

IBIS Summit 2021

FSV vs SPS for 35 GHz Bandwidth

FSV, 35 GHz

FSV:		NO	S11		S21		GDM Average			
		NU.	ADM	FDM	GDM	ADM	FDM	GDM	(GDM_S11+GDM_S21)/2	Qualitative
[0 0 1]	Excellent	1	0.33	0.43	0.59	0.15	0.18	0.26	0.43	Fair
			0.41	0.54	0.76	0.04	0.05	0.07	0.42	Fair
(0.1, 0.2] Very Good (0.2, 0.4] Good (0.4, 0.8] Fair (0.8, 1.6] Poor		3	0.16	0.24	0.33	0.12	0.13	0.19	0.26	Good
		4	0.25	0.35	0.47	0.09	0.16	0.20	0.34	Good
		5	0.35	0.47	0.66	0.25	0.27	0.41	0.54	Fair
		6	0.40	0.49	0.72	0.42	0.40	0.64	0.68	Fair
		7	0.17	0.28	0.36	0.14	0.14	0.22	0.29	Good
		8	0.35	0.37	0.56	0.19	0.23	0.33	0.44	Fair
			0.39	0.44	0.65	0.11	0.19	0.23	0.44	Fair
(1.6, inf) Very Poor			0.43	0.44	0.70	0.05	0.06	0.09	0.40	Fair
		11	0.45	0.51	0.75	0.11	0.15	0.20	0.48	Fair
	12	0.44	0.60	0.82	0.03	0.04	0.05	0.44	Fair	
SPS:		13	0.24	0.40	0.52	0.15	0.18	0.26	0.39	Good
		14	0.31	0.50	0.66	0.11	0.19	0.24	0.45	Fair
100 1001	Good	15	0.37	0.55	0.73	0.47	0.50	0.75	0.74	Fair-Poor
[99, 100]	J Good	16	0.33	0.45	0.63	0.13	0.21	0.28	0.45	Fair
[QU QQ)	Accentable	17	0.29	0.60	0.73	0.13	0.15	0.22	0.48	Fair
[00, 00)	(SS) Acceptable	18	0.32	0.45	0.61	0.14	0.20	0.27	0.44	Fair
[80, 90)	90) Inconclusive 80) Bad	19	0.35	0.51	0.69	0.14	0.18	0.25	0.47	Fair
[-, -)		20	0.50	0.56	0.83	0.60	0.55	0.91	0.87	Poor
[0, 80)		21	0.46	0.59	0.83	0.63	0.78	1.13	0.98	Poor
- ,		22	0.45	0.61	0.85	0.34	0.69	0.83	0.84	Poor
		23	0.43	0.65	0.86	0.34	0.42	0.61	0.73	Fair-Poor

SPS, 35 GHz

NO	SPS [0-100]%
NO.	35 GHz
1	92.5639
2	91.8262
3	91.7525
4	92.8552
5	91.1739
6	90.8311
7	93.0992
8	93.8351
9	91.087
10	93.0776
11	94.7303
12	95.3771
13	93.3182
14	94.1929
15	88.4187
16	94.4118
17	93.596
18	93.969
19	91.9582
20	93.3429
21	93.9318
22	91.4807
23	91.6811

8/19/2021

Let's look closer at cases 1, 3, 15, 20...

#1 - 2-in Strip – SPS Acceptable

lectromagnetic Solutions

IBIS Summit 2021

#1 - 2-in Strip - S11 – SPS Acceptable

#1 - 2-in Strip - S11 - Fair/Acceptable

8/19/2021

8

#1 - 2-in Strip – S12 – SPS Acceptable

#1 - 2-in Strip – S12 – Good/Acceptable

10

#3 – Strip Beatty – SPS Acceptable

#3 – Strip Beatty - S11 – Good/Acceptable

IBIS Summit 2021

#3 – Strip Beatty – S21 – Very Good/Acceptable

#15 – Voids – SPS Inconclusive

#15 – Voids – S11 – Fair-Poor/Inconclusive

A:15_MS_SE_GND_Voids_J74_J75.s2p; B:15_cmp28_gnd_voids_p1J74_p2J75.s2p; Magnitude(S), [dB]

See 3D spiral plots in Appendix...

15

#15 – Voids – S21 – Fair-Poor/Acceptable

#20 – Diff. 2-in uStrip – SPS Acceptable

Single-Ended	A:20_MS_DF_2inch:s4p; B:20_cmp28_mstrp_diff_2inch_J38J37J34J33.s4p, Magnitude(S), (dB)	A:20_MS_DF_2inch:s4p; B:20_cmp28_mstrp_dif_2inch_J38J37J34J33:s4p,
SPS(35) = 93.34%		
93.6896 96.0340 98.5680 96.8778	3 -10	
96.0421 93.8026 96.5445 98.4246		
98.5675 96.5439 93.3429 95.942	7 and the an there is a state of the	-25 S21
96.8520 98.4240 95.9464 93.4017		
2D		
The second se		-625
	meas – brown	
	5 10 15 20 25 30 35 40 45 13 Jul 2021, 15:17:33, Simberian Inc. Frequency, [GH	5 10 15 20 25 30 35 40 45 [2] 13 Jul 2021, 15: 19:23. Simberian Inc. Frequency, [GHz]
A A A A A A A A A A A A A A A A A A A	A:S[1,1]; + B:S[1,1]; A:20. MS_DF_Zinch.s4p; B:20_cmp28_mstrp_diff_Zinch_J38J37J34J33.s4p,	A:S[2,1]; B:S[2,1]; A:20_MS_DF_2inch.s4p; B:20_cmp28_mstrp_diff_2inch_J38J37J34J33.s4p,
	Magnitude(S), [dB]	Magnitude(S), (dB)
	-25 Ara AD a cathe at all Man	
		S41-FEXI
the state of the s		-37.5
	^{.75} \$31 - NEXT	-62.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-87.5	
		50 0 5 10 15 20 25 30 35 40 45 50 (cu-) 13.lul 2021 15.20.34 Simberian Inc.
Simberian	A:S[3,1]: B:S[3,1]:	→ AS[4,1]; → B:S[4,1]; PIC Summit 2021 = 9/10/2021
Electromagnetic Solutions	11	DIG GUITIITIIL ZUZ I 0/ 19/2021

17

#20 – Diff. 2-in uStrip – S11 – Poor/Acceptable

#20 – Diff. 2-in uStrip – S21 – Poor/Acceptable

SPS is less sensitive to S-parameters with small magnitude

IBIS Summit 2021

#20 – Diff. 2-in uStrip – S21 – SPS Acceptable

Small magnitude of both S-parameters produces smaller distance

Conclusion

- FSV and SPP metrics are used to compare analysis to measurements for CMP-28 validation platform
- □ Similar qualitative interpretations are observed on most of the structures
- Differences in SPS and FSV interpretation are observed on S-parameters with very small magnitudes – below 0.1
 - SPS may be not acceptable for comparison of transmission parameters in links with high insertion losses – it needs modification
 - FSV captures the difference quite well it mirrors the human perception
- SPS is much simpler and may be used for preliminary analysis of large datasets or as complementary to FSV

Appendix: Backup Slides

IBIS Summit 2021

#3 – Strip Beatty – S11 – SPS Acceptable

#3 – Strip Beatty – S21 – SPS Acceptable

#15 – Voids – S11 – SPS Inconclusive

#15 – Voids – S21 – SPS Acceptable

#20 – Diff. 2-in uStrip – S11 – SPS Acceptable

#20 – Diff. 2-in uStrip – S31 – SPS Acceptable

#20 – Diff. 2-in uStrip – S41 – SPS Acceptable

IBIS Summit 2021