

Simbeor Application Note #2015_01, May 2015 © 2015 Simberian Inc.

Simbeor®: Accurate, Productive, Cost-Effective Electromagnetic Signal Integrity Software...

Introduction

- This is investigation of current density distribution in microstrip line with Simbeor 3DTF solver (from Simbeor THz release)
- Simbeor 3DTF is frequency-domain solver with the simulation technology based solely on the Trefftz Finite Element (TFE) method
 - TFE method is the finite element method based on the wave expansion of electromagnetic fields inside elements and either scattering or admittance matrix formulation
 - Electromagnetic field computed within the element is always exact solution of the Maxwell's equations
 - The solution is an approximation of the boundary value problems (problem with all boundary conditions imposed)
 - Any type of dielectric, conductor and semi-conductor are meshed and solved in the same way
 - Trefftz element size within dielectrics and conductors may be comparable or even greater than wavelength or skin depth without the loss of accuracy in many problems
 - Trefftz elements within conductive and semi-conductive materials provide asymptotically correct solution at low and high frequencies as well as at the frequencies of transition to skin-effect
- TFE method makes possible to solve problems over 6-8 decades of frequency bandwidth with the same mesh in one frequency sweep as demonstrated here

Microstrip segment

- 7-mil wide microstrip line segment 60 mil long in 1 mil thick layer Signal1 with two ports with the reference conductor in Plane1 (1 mil thick); conductor is copper no roughness;
- PMC boundary conditions as external wall to prevent current flow on the simulation box walls
- Currents are computed at the X=0 plane (middle of the segment) cross section is Y=104 mil by Z=20 mil; plane size along Y is 84 mil;
- Port 1 has 1 V voltage source in series with 50 Ohm resistor, port 2 is terminated with 50 Ohm (current in strip and plane is 0.01 A)
- Current density in A/m² is computed and shown on all pictures

Peak conduction current 1 KHz

Uniform distribution in both strip and plane

Skin Depth 82 mil (conductor thickness is 0.012 of SD) Current density on strip 2.22e6 A/m^2, on plane 1.85e5 A/m^2 – 0.01 A total current on plane and strip in opposite directions

Peak conduction current 1 MHz

Uniform current distribution in strip, crowding in plane

Skin Depth 2.6 mil (conductor thickness is 0.38 of SD)

Peak conduction current 10 MHz

Higher currents at the strip edges, further crowding in plane

Skin Depth 0.82 mil (conductor thickness is 1.22 of SD)

Peak conduction current 100 MHz

Further concentration at strip edges and in plane below the strip

Skin Depth 0.26 mil (conductor thickness is 3.84 of SD)

Peak conduction current 1 GHz

Well developed skin effect in both strip and plane

Skin Depth 0.082 mil (conductor thickness is 12.2 of SD)

Peak conduction current 10 GHz

Higher current density in thinner layer

Skin Depth 0.026 mil (conductor thickness is 38.5 of SD)

Peak conduction current 50 GHz

Higher current density in thinner layer

Skin Depth 0.012 mil (conductor thickness is 83.3 of SD) Plot is on the same scale as 10 GHz

Peak conduction current 100 GHz

Higher current density in thinner layer

Skin Depth 0.0082 mil (conductor thickness is 122 of SD) Plot is on the same scale as 10 GHz

Instantaneous current 1 MHz (t=0)

Instantaneous current 1 GHz (t=0)

Skin Depth 0.082 mil (conductor thickness is 12.2 of SD)

Instantaneous current 1 GHz - strip

Skin Depth 0.082 mil (conductor thickness is 12.2 of SD)

Peak power flow at 1 GHz [W/m^2]

Instantaneous current 1 GHz - strip

Delay of the wave propagating into the strip explain the current reverse and the internal inductance Skin Depth 0.082 mil (conductor thickness is 12.2 of SD)

Instantaneous current 1 GHz - plane

Analytical solution for current density

Instantaneous current 10 GHz

Skin Depth 0.026 mil (conductor thickness is 38.5 of SD)

Peak conduction currents at 100 GHz

Skin Depth 0.0082 mil (conductor thickness is 122 of SD)

Instantaneous surface current 1 MHz

Instantaneous surface current 1 GHz

Instantaneous electric field at 1 GHz

Instantaneous magnetic field at 1 GHz

Instantaneous power flow at 1 GHz

Instantaneous displacement current at 1 GHz

Instantaneous surface current 100 GHz

Instantaneous magnetic field 100 GHz, t=0

Hfield_mag

-40

30

20

6.247e-06

4.660e+01

Instantaneous electric field 100 GHz, t=0

What if we cut the plane?

Same strip line segment, 7.5 mil by 43.5 mil cut in the plane

Surface current density at 1 MHz

Surface current density at 1 GHz

Electric field at 1 GHz

Magnetic field at 1 GHz

Power flow at 1 GHz

Displacement current at 1 GHz

Surface current density at 10 GHz

Surface current density at 100 GHz

Electric field at 100 GHz

Magnetic field at 100 GHz

Power flow at 100 GHz

Displacement current at 100 GHz

Observations

- Current and field distribution of microstrip line segment is analyzed from 1 KHz to 100 GHz with TFE-elements on the same hexahedral mesh in one frequency sweep
- Different stages of current distribution are observed
 - Uniform at very low frequency
 - Current crowding in the reference plane at low frequencies
 - Current crowding at the surface and edges at higher frequencies

■ At high frequencies:

- The largest current density is at the strip edges (theoretically infinite value, complicates estimates of conductive losses)
- Currents observed at the bottom surface of strip are over 2 times larger than on the top surface in the analyzed case
- Currents have reversed direction at about 2 skin depths

Simberian Inc.

- Mission
 - Build accurate, easy-to-use, and cost-effective electromagnetic software for high-speed electronic design automation
- Incorporated in USA on February 28, 2006
 - Founder and President Yuriy Shlepnev
 - PhD in in computational electromagnetics
 - 25-years experience in building electromagnetic software
- Development in Las Vegas, USA, St. Petersburg and Voronezh Russia

Location and contacts

- Corporate office: 3030 S Torrey Pines Dr., Las Vegas, NV 89146, USA Tel/Fax +1-702-876-2882, skype simberian
- Web: <u>www.simberian.com</u>
- Support knowledge base <u>www.kb.simberian.com</u>

