

Simbeor Application Note #2011_04, April 2011 © 2011 Simberian Inc.

Material parameters identification with GMS-parameters in Simbeor 2011

Simbeor®: Accurate, Fast, Easy, Affordable Electromagnetic Signal Integrity Software...

Outline

- Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Simbeor can be used for

- PCB and packaging interconnects compliance analysis with advanced 3D full-wave models
 - Stackup planning and interconnect budget exploration
 - Interconnect design verification
- Identification of models for conductive and dielectric materials (patent pending)
- Building broadband SPICE macro-models for consistent analyses in frequency and time domains
- Automation of S-parameters quality assurance and all macro-modeling tasks

Simbeor is synthesis, full-wave analysis and macro-modeling tool for interconnects

Simbeor is the one-stop solution for interconnect budget exploration, design verification with electromagnetic and linear analyses and macro-modeling tasks

Simbeor is based on de-compositional electromagnetic analysis of interconnects

ctromagnetic Solutions

Outline

Simbeor 2011 overview

Material parameters identification with GMS-parameters

- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Material parameters identification with GMSparameters

- Measure S-parameters of two test fixtures with different length of line segments S1 and S2
- Transform S1 and S2 to the T-matrices T1 and T2, diagonalize the product of T1 and inversed T2 and compute GMS-parameters of the line difference
- Select material model and guess values of the model parameters
- Compute GMS-parameters of the line difference segment by solving Maxwell's equation for t-line cross-section (only propagation constants are needed)
- Adjust material parameters until computed GMS parameters fit measured GMS-parameters with the computed

Procedure is implemented in Simbeor 2011

Simberian's patent pending #13/009,541

© 2011 Simberian Inc.

Measure S-parameters of two test fixtures with line segments (no SOLT calibration is required)

S1 and T1 for line with length L1

□ S2 and T2 for line with length L2

T1 and T2 matrices are scattering T-parameters (computed directly from S-parameters)

Extract Generalized Modal T-parameters (GMT) and then GMS-Parameters (1-conductor case)

Extract Generalized Modal T-parameters (GMT) and then GMS-Parameters (2-conductor case)

Identifying dielectrics by fitting GMSparameters (1-conductor case)

Solve Maxwell's equations for 1-conductor line:

$$GMSc = \begin{bmatrix} 0 & \exp(-\Gamma \cdot dL) \\ \exp(-\Gamma \cdot dL) & 0 \end{bmatrix}$$

Fit measured data:

$$GMSm = \begin{bmatrix} 0 & T_{11} \\ T_{11} & 0 \end{bmatrix}$$

dLProject1.Difference Top.Simulation1, Sm[In1(M1),In2(M1)] Project2.4 inch segment.Simulation1, Sm[In1(M1),In2(M1)] - - -Magnitude(S), [dB] Group Delay, [ns] 0.575 0.5625 0.55 0.5375 0.525 0.5125 0.5 10 20 30 50 15 Dec 2010, 12:24:22, Simberian Inc. Frequency, [GHz]

Measured GMS-parameters of the segment can be directly fitted with the calculated GMS-parameters for material parameters identification

Only 1 complex function!

Phase or group delay can be used to identify DK and insertion loss to identify LT or conductor roughness!

Identifying dielectrics by fitting GMSparameters (2-conductor case)

- Measured GMS-parameters of the segment can be directly fitted with the calculated GMS-parameters for material parameters identification
- **Two functions can be used to identify 2 dielectrics!**

The GMS-parameters technique is the simplest possible

- Needs un-calibrated measurements for 2 t-lines with any geometry of cross-section and transitions
 - No extraction of propagation constants (Gamma) from measured data (difficult, error-prone)
 - No de-embedding of connectors and launches (difficult, errorprone)
- Needs the simplest numerical model
 - Requires computation of only propagation constants
 - No 3D electromagnetic models of the transitions
- Minimal number of smooth complex functions to match
 - One parameter for single and two parameters for differential
 - All reflection and modal transformation parameters are exactly zeros

Outline

- □ Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Dielectric identification on PLRD-1

17 mil wide microstrip line,S-parameters for 2 segments(1.75 in and 3.5 in)

PLRD-1 validation board designed and investigated by Teraspeed Consulting Group

Outline

- Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Material identification board from Molex/Teraspeed Consulting Group

- D. Dunham, J. Lee, S. McMorrow, Y. Shlepnev, 2.4mm Design/Optimization with 50 GHz Material Characterization, DesignCon2011 (also App Note #2011_01 at www.simberian.com)
- □ 4000-13EP dielectric

6 test fixtures with 2, 4 and 6 inch strip line segments in Layer 1 and Layer 4

Signal Layer 4

© 2011 Simberian Inc.

Pre-qualification of launches: Launch 2, layer S1

Pre-qualification of launches: Launch 2, layer S4

6-inch fixture (green lines) isquestionable (near launch)2 and 4 inch structures are within1 Ohm - suitable for theidentification

TDR computed with rational macromodels (RMSE<0.005) and Gaussian step with 20 ps rise time

GMS-parameters from 3 best pairs

Generalized Insertion Loss

Already suitable for the identification, but can be further improved with post-processing

Generalized Group Delay

Fitted GMS-parameters from 3 best pairs

Generalized Insertion Loss

Now data are suitable for precise characterization of materials!

© 2011 Simberian Inc.

Generalized Group Delay

Final match after adjustment of Dk/LT and roughness parameters

Enquire Teraspeed for dielectric parameters or do it yourself!

11/23/2011

© 2011 Simberian Inc.

Outline

- □ Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

CMP-08 (designed with Simbeor)

- Validation board with coupled microstrip and strip structures available from Wild River Technology LLC
- J. Bell, S. McMorrow, M. Miller, A. P. Neves, Y. Shlepnev, Unified Methodology of 3D-EM/Channel Simulation/Robust Jitter Decomposition, DesignCon2011 (also App Note #2011_02 at www.simberian.com)

Good correspondence up to 30 GHz for almost all 38 test structures! /

11/23/2011

nberian

ectromagnetic Solutions

3 inch Differential Stripline Comparison of Noiseless Eye Diagrams, ISI and DDj jitter figures.

Microstrip line structures

(1) - 3 in coupled line
(2) - 6 in coupled line
(3) - 11 in coupled line
(4)-(6) SE microstrip
lines

Top – red Bottom - blue GND - yellow

Identify solder mask & prepreg

Coupled microstrip line structures

3, 6 and 11 in fixtures with coupled microstrip line sections – 3 pairs for identification:

Large variations of impedance profile may distort the GMS-parameters and degrade the material identification accuracy over the whole frequency band

Matching generalized modal IL and GD for coupled microstrip segments

Computed GMS-parameters match measured with solder mask DK=4.5, LT=0.02 and prepreg DK=4.3, LT=0.025 at 1 GHz, WD model

Strip-line structures

(1) - 3 in coupled line (2) - 6 in coupled line (3) - 11 in coupled line (4)-(6) - SE strip lines

S3 – pink S4 - cyan GND - yellow

Identify core using prepreg data identified with MSL

Coupled strip-line structures

3, 6 and 11 in fixtures with coupled strip line sections – 3 pairs for identification: TDR of all 3 fixtures and all ports computed from

measured S-parameters with rational macro-model

Due to relatively large variations of impedance profile and the noise, the GMSparameters may be distorted and accuracy of the model degraded at all frequencies

Matching generalized modal IL and GD for coupled strip line segments

Computed GMS-parameters match measured with core DK=4.45, LT=0.015 and prepreg DK=4.3, LT=0.025 at 1 GHz, WD model

Outline

- □ Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Isola's test board (designed with Simbeor)

- **8** layer stackup with two microstrip layers (Top and Bottom) and 2 strip-line layers (L3, and L6)
- Microstrip Top TWS copper foil, 1080 prepreg, no solder mask
- Strip L3 TWS copper foil, laminate 1080 core and prepreg
- Strip L6 LP3 copper foil, laminate 2116 core and prepreg
- Microstrip Bottom LP3 copper foil, laminate 2116 prepreg

Test structures – 4 and 8 inch line segment with transitions to probe pads

11/23/2011

Initial data from specifications

Dk and LT or Df measured by Berezkin stripline method:

IS680 STANDARD PREPREG OFFERING					
Prepreg Designation	Resin Content (%)	Thickness (in.)	Thickness (mm)	Dk @ 2, 5 and 10 GHz	Df @ 2, 5 and 10 GHz
106	80	0.0030	0.075	2.80	0.0028
1067	80	0.0038	0.095	2.80	0.0028
1080	72	0.0040	0.100	3.00	0.0030
1086	72	0.0047	0.118	3.00	0.0030
3313	60	0.0047	0.118	3.25	0.0032
2116	58	0.0058	0.145	3.30	0.0034

Dk +-0.05 Df + -0.0005

Roughness parameters are measured with profilometer

8.2

1.0

0.0

TWS: Rq=2.6 um, RF=1.85

LP3: Rq=0.68 um, RF=1.3

TWS & IS680-1080 – No Roughness

Huge difference in insertion loss (IL) and in Group Delay both in microstrip and strip-line configurations (GMS, 4-inch)

Stars - measured and fitted, Circles - modeled

LP3 & IS680-2116 – No Roughness

 Huge difference in insertion loss (IL) and relatively small in Group Delay both in microstrip and strip-line configurations (GMS, 4-inch)

Stars - measured and fitted, Circles - modeled

© 2011 Isola © 2011 Simberian Inc.

TWS & IS680-1080 – Roughness from profilometer measurements

- Dielectric constants are adjusted 3 -> 3.15 for 1080 prepreg, 3-> 3.35 for 1080 core
- Roughness parameters from **profilometer**: Rq=2.6 um, RF=1.85 (25% for shiny)
- Insertion loss still does not match the measurements!

Stars - measured and fitted, Circles - modeled

TWS & IS680-1080 – Adjusted roughness parameters to fit the measurements (Simbeor)

- Dielectric constants are adjusted 3 -> 3.15 for 1080 prepreg, 3-> 3.35 for 1080 core
- Roughness parameters: Rq=0.35 um, RF=2.8 for all surfaces
- Both insertion loss and group delay now match well!

Stars - measured and fitted, Circles - modeled

© 2011 Isola © 2011 Simberian Inc.

LP3 & IS680-2116 – Adjusted roughness parameters to fit the measurements

- □ Dielectric constants are adjusted 3.3 -> 3.36 for 2116 prepreg, 3.3 -> 3.25 for 2116 core
- Roughness parameters: Rq=0.11 um, RF=7 for all surfaces
- Acceptable match for insertion loss and group delay (not perfect for strip)

Singular surface roughness model

- Multiple spikes on the surface of conductor are up to 10 um for TWS copper
- Spikes increase capacitance of the surface due to singularity of electric field
- We are dealing with singular surfaces

With appropriate spike size and distribution should work for any strip size without Dk adjustment

11/23/2011

© 2011 Isola © 2011 Simberian Inc.

Outline

- □ Simbeor 2011 overview
- Material parameters identification with GMS-parameters
- Example of dielectric identification for PLRD-1 board
- Molex/Teraspeed Consulting Group board
- Wild River Technology CMP-08 board
- Roughness characterization (Isola's board)
- Nickel characterization (Teraspeed's board)
- Conclusion

Plated nickel trace anomaly

S-parameters of single-ended microstrip lines with ENIG finish with about
 0.05 um of Au and about 6 um of Ni over the copper

Plated nickel trace anomaly

S-parameters of single-ended microstrip lines with ENIG finish with about
 0.05 um of Au and about 6 um of Ni over the copper

Anomaly in group delay around 2.7 GHz - not previously reported!

Cannot be reproduced with regular metal model

11/23/2011

All measurements are from Teraspeed Consulting Group Group delays for three structures with 100 mm microstrip line segments and for four structures with 150 mm segments are plotted

© 2011 Teraspeed Consulting Group LLC © 2011 Simberian Inc.

GMS-parameters for nickel-plated trace

S-parameters of reflective structures with 100 mm and 150 mm segments of microstrip line can be converted into GMS-parameters of 50 mm segment

GMS-parameters are noisy at high frequencies due to non-identities of probes/launches and crosssections of two test structures (see more on sensitivity in app note #2010_03, www.simberian.com)

Plated nickel model identification

 Adjust Ni model parameters to match measured and computed GMS-parameters for 50 mm segment of microstrip line, strip width 69 um, thickness 12 um

ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper Substrate dielectric DK=3.x and LT=0.01x at 1 GHz, wideband Debye model Landau-Lifshits model for Nickel: Mul=5.7, Muh=1.4, f0=2.5, dc/f0=0.22, relative resistivity 3.75

ectromagnetic Solutions

Measured.50 mm SE MSL Generalized D to C.Simulation1, Sm[In1(M1),In2(M1)]
 Computed.50 mm SE MSL.Simulation1, Sm[In1(M1),In2(M1)]
 Group Delay, [ps]

© 2011 Simberian Inc.

S-parameters of test structures

 Nickel: resistivity 6.46e-8 Ohm*meter, Landau-Lifshits Permeability Model: Mul=5.7, Muh=1.4, f0=2.5, dc/f0=0.22

Measured – solid lines Modeled – stars and circles

5 Gbps signal in structure with 150 mm line

© 2011 Teraspeed Consulting Group LLC © 2011 Simberian Inc.

12 Gbps signal in structure with 150 mm line

Conclusion

- Material parameters identification with GMSparameters is simple and accurate
- Any project must start from the dielectric and roughness parameters identification
- The identification procedure is automated with optimization in Simbeor 2012
- Measured S-parameters have to be pre-qualified
 - Pass the quality metrics in Simbeor TA
 - Have consistent impedance on TDR plots

References

- All are available at <u>http://www.simberian.com/AppNotes.php</u>
- Y. Shlepnev, A. Neves, T. Dagostino, S. McMorrow, Practical identification of dispersive dielectric models with generalized modal S-parameters for analysis of interconnects in 6-100 Gb/s applications, DesignCon 2010 (App Note #2010_01)
- Sensitivity of PCB Material Identification with GMS-Parameters to Variations in Test Fixtures, Simberian App Note #2010_03
- Material Identification With GMS-Parameters of Coupled Lines, Simberian App Note #2010_04
- J. Bell, S. McMorrow, M. Miller, A. P. Neves, Y. Shlepnev, Unified Methodology of 3D-EM/Channel Simulation/Robust Jitter Decomposition, DesignCon2011, (App Note #2011_02)
- D. Dunham, J. Lee, S. McMorrow, Y. Shlepnev, 2.4mm Design/Optimization with 50 GHz Material Characterization, DesignCon2011 (App Note #2011_03)

About Simberian Inc.

- Mission
 - Build easy-to-use, efficient and cost-effective electromagnetic software for high-speed electronic design automation
- Incorporated in USA on February 28, 2006
 - Founder and President Yuriy Shlepnev
 - PhD in in computational electromagnetics
 - Over 25-years experience in building electromagnetic software
- Development in Las Vegas, USA, Novosibirsk, St. Petersburg and Voronezh Russia

Location and contacts

- Corporate office: 3030 S Torrey Pines Dr., Las Vegas, NV 89146, USA Tel/Fax +1-702-876-2882, skype simberian
- Web: <u>www.simberian.com</u>
- Support knowledge base <u>www.kb.simberian.com</u>

