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Abstract 
In any channel operating at 2 Gbps and above, conductor and dielectric losses can 

dominate channel performance. These effects must be included in any accurate system 

simulation. The problem isn’t that simulators don’t do this; there are several choices in 

interconnect loss mathematical expressions and it’s difficult to decide how to transform 

fab information into simulator input. 

 

There are different combinations of parameterized mathematical expressions for 

dielectric and conductor loss which are in popular use in the industry. Each works to 

some extent. This paper takes each mathematical expression, explains its origin, evaluates 

its predicted insertion loss magnitude and phase then explores how the expression scales.  

 

This is useful when translating test coupon results into accurate simulation predictions. 
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Introduction 
In any channel operating at 2 Gbps and above, conductor and dielectric losses can 

dominate channel performance. Conductor loss is dominated by the resistive losses from 

the current redistribution related to skin depth effects and the impact of surface texture on 

one or all copper surfaces increasing the loss due to absorption of the propagating 

electromagnetic field. 

 

The dielectric loss is dominated by the material properties described by the dissipation 

factor and dielectric constant of the laminates, and their relative distribution in the stack 

up. 

 

Both mechanisms contribute to frequency dependent loss and to dispersion in the speed 

of the signal. The dispersion can be easily described by an effective dielectric constant.  

 

These mechanisms must be included in any accurate system simulation. The problem 

isn’t that simulators don’t do this; there are several choices for interconnect loss 

mathematical expressions. While it is often possible to get accurate information about the 

cross section geometry information, it is a challenge to get material properties 

information in a format that immediately translates into mathematical parameters and 

results in accurate simulation. 

 

A number of studies [1], [2], [3] have reported success in fitting parameterized 

mathematical expressions for loss to specific measured test lines. There is no guarantee 

that measured data in a high volume manufacturing environment will be R&D laboratory 

quality. With noise added, while a good match may be obtained, there may not be a 

unique solution. 

 

Rather than take specific measurements and fit parameters of a model, in this study each 

of the popular mathematical expressions are evaluated to compare the sensitivity of their 

parameters to the predicted frequency dependence of loss and dispersion. 

 

A few examples are offered for how to fit parameters to measured data. 

 

 

Mathematical Expressions for interconnect loss 
Any real interconnect will have a causal performance. The most valuable mathematical 

expressions that are the basis of simulating insertion loss in transmission lines should be 

causal.  

 

To first order the conductor and dielectric losses are independent. This may not always be 

a good assumption. There may be some connection between the tooth structure of the 

copper surface texture and the dielectric material, changing the effective Dk or Df of the 

laminate. [4], [5] In this study, we assume the two mechanisms are independent. 

 

Conductor Texture Power Loss Mechanisms: 
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There are four popular mathematical expressions [6] used to describe conductor power 

loss: 

 

1. A smooth copper-skin depth based power loss [7]. 

 

2. The Hammerstad empirical fit for surface texture which includes dependence on 

an rms deviation term. 

 

3. A modified Hammerstad empirical fit for surface texture which includes an 

additional surface area factor and an rms deviation term. 

 

4. The Huray snowball model [8] for surface texture which models the surface as a 

collection of copper spherical balls electrodeposited on a Matte or Flat base 

copper surface.  This model is independent of rms deviation.  

 

 

In each mathematical expression, the macroscopic parameters which define the base 

conductor cross section and material properties are the same:  

 

Line width, w 

Conductor thickness, t 

Bulk conductivity, σ 

They differ in their description of copper surface texture. 

 

 

The Hammerstad empirical fit [9] is based on a copper surface texture proposed by 

Samuel Morgan that has a 2 dimensional transverse triangular distortion, shown in Figure 

1.  The Morgan model was based on a two-dimensional numerical solution of Maxwell’s 

equations. 

 

 
Figure 1. Morgan’s concept of transverse equilateral triangular conductor grooves on a flat base 

copper surface; ∆ is the RMS deviation from flatness.  The red arrows show the direction of surface 

current flow if the signal electromagnetic field propagates from the upper left (Port 1 input) toward 

the lower right (Port 2 output).  

 

 

Morgan intuitively guessed that the power loss due to the various surface textures was 

correlated with the ratio of the RMS deviation to the skin depth at various frequencies so 
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he plotted his rough power loss results (compared to his smooth power loss results) for 

transverse grooves as a function of the ratio, ∆/δ. 

 

Hammerstad did not know how to incorporate the Morgan parallel groove loss results (up 

to 30% of the transverse groove losses) so he ignored them.  He then estimated that a 

mathematical function was a “good” fit to the Morgan data 
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Where 

 

∆ is the rms deviation from a flat surface 

δ is the skin depth of copper as a function of frequency 

 

There was no theoretical basis for this mathematical function.  

 

The modified Hammerstad empirical fit [5] adds a scale factor which is basically related 

to the added surface area from the roughness over a flat surface. This is illustrated in 

Figure 2.  

 

 
Figure 2. Illustration of the roughness factor scaling term to account for any angle of tooth and the 

resulting increased surface area. 

 

This higher surface area is integrated into the modified Hammerstad approximation as a 

scaling factor 
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When SF = 2, this expression reduces to the Hammerstad empirical mathematical 

equation.  

 

The Huray snowball Model uses a first principles analysis with no fudge factors or 

scaling factors to describe the copper surface texture in terms of a collection of small 

copper spheres electrodeposited on a Matte or Flat copper surface.  In the case of a Matte 

surface consisting of a hexagonal lattice of relatively smooth oscillations the area of the 

surface, AMatte, is larger than the area of a Flat hexagonal surface, AFlat.  In the case of 

electrodeposition on a Flat surface, the collection of small copper spheres is randomly 

electrodeposited on a unit area.  In both cases, the number of spheres per unit flat area, 

Ni/AFlat, along with the radius of each sphere, ai (including their area, 4πai
2
) determine the 

additional power lost due to the textured copper.  This effect, for a hexagonal Matte 

surface is illustrated in Figure 3. 

 

 
Figure 3.  Illustration of the features of the Huray model for a hexagonal Matte surface of copper 

upon which copper spheres have been electrodeposited.  For the illustration, the spheres have been 

taken to be of uniform radius, but in general there is a distribution of spherical (snowball) sizes. 

 

This model is very similar to the actual close up SEM views of Matte copper surfaces 

after electrodeposition treatment for adhesion promotion, as show in Figure 4. 
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Figure 4. SEM photograph of a High Profile surface copper Matte foil following additional “anchor 

nodule” electrodeposition (snowballs) on top of a heat treated base foil (with large micrograins 

arranged in an approximately hexagonal geographic pattern). 

 

 

Form the geometrical distribution of spheres, and the absorption and scattering properties 

of a single sphere, the impact on this textured surface can be analytically solved. The 

power loss is given by: 
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Where the first term relates the relatively larger fractional area of the Matte base surface 

before electrodeposit of the copper nodules. 

 

AMatte/AFlat is the relative area of the Matte base compared to a flat surface 

ai is the radius of the copper sphere (snowball) of the i
th

 size. 

Ni / AFlat is the number of copper spheres of the i
th

 size per unit Flat area. 

δ is the electromagnetic skin depth for copper at a particular frequency. 

 

In this model, a rougher surface is obtained with more snowballs per unit area, whether 

electrodeposited on a Matte or Flat copper base but does not depend upon the deviation 

from flatness, ∆. The radius of the balls and their associated total area Ni (4πai
2
) per unit 

flat area, AFlat, affects the scaling of the loss with frequency. 

 

 

Dielectric Power Loss Mechanisms: 
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The model used in this study to describe dielectric loss is the wideband Debye model 

[10]. The simplest and most commonly used approach to implement a wideband, or an 

infinite pole Debye model, is using the Svensson-Djordjevic approximation [11].  

 

In this model, the real part of the dielectric constant is assumed to take a log dependence 

on frequency. The imaginary part of the dielectric constant is related to the real part with 

the Kramers-Kronig relationship. These parameters take the form of: 

 

( )2 2

2 1

Dk
Dk(f ) Dk log(f ) log(f )

log(f ) log(f )

∆
= + −

−
  

And 

 

( )
2 1

(f ) 0.682 Dk 0.682
Df f slope

Dk(f ) Dk(f ) log(f ) log(f ) Dk(f )

′′ε ∆ −
= = =

−
  

 

 

There are five parameters that define the Svensson-Djordjevic approximation to the 

wideband Debye model:  

 

f1 is the low frequency range for the model 

f2 is the high frequency range for the model 

f is the frequency at which Dk and Df are defined 

Dk at a frequency 

Df at a frequency 

 

From these five terms, the functional dependence of Dk(f) and Df(f) can be calculated. 

This is inherently a causal model.  Other causal models, neglected in this paper, are the 

multipole Debye over-damped model and the multipole Lorentz relaxation models. 

 

 

The Fundamental Problem and Solution  
 

A First Principles Design Flow 

In a perfect world, design information such as cross section information, material 

properties and manufacturing processes, would be input to a simulation tool and from 

first principles, with no feedback from the fab vendor, and an accurate prediction of the 

performance of the interconnects would be available for integration into a system level 

simulation. 

 

Before there was so much concern about loss at frequencies higher than 1 GHz, the 

industry had come close to this goal. The characteristic impedance, time delay and cross 

talk features are straightforward to accurately predict. When the details about the specific 

glass yarn, resin composition of each laminate layer and the process conditions like etch 

back are taken into consideration, interconnect performance can be controlled and 

predicted to better than 5% for frequencies below 1 GHz. 
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In the design for a target impedance or cross talk level, an accurate simulation 

environment allows an engineer to realistically explore design space and make 

performance, practical manufacturing capabilities and cost tradeoffs.  

 

But, when signal data rates are in excess of 2 Gbps (with inclusion of up to the 5
th

 

harmonic for signal bandwidths) and interconnects can exceed 40 inches in length, an 

accurate representation of loss at frequencies above 5 GHz is essential. The challenge is 

in being able to simulate the performance of a specific interconnect structure based on the 

first principles input information from a fab vendor about their processes and material 

choices.  

 

This is the industry goal for lossy interconnects: to establish a methodology, set of tools 

and a set of specific measureable input properties which will output an accurate 

prediction of a specific interconnect’s performance which will closely match a real 

measurement. 

 

With such a tool, design space can be explored and the most cost effective balance in 

materials choices manufacturing processes and design for acceptable loss could be found.  

 

Finalizing this process requires more investigation in determining the best way of 

characterizing surface texture and material properties, parameterizing the models and 

accurately measuring the features of the manufacturing process and specific intrinsic of 

materials features which affect loss. 

 

In the mean time, another approach is being adopted to fill the gap and provide some 

degree of predictability or final lot acceptance. 

 

 

A Practical Approach: Feedback Based Design Flow 

As an intermediate goal, one approach is to take the information from a fabricated test 

coupon and extract from it the parameters and their values which would be used as input 

to a simulation tool which would then accurately predict the performance of all 

interconnects fabricated in the same way. 

 

Two additional features of this process would increase the value of this approach. First 

would be to allow scaling to different cross section geometries rather than just those 

specific lines that look like the features of the coupon’s test line, assuming the same 

materials and processes for all the layers. This allows the possibility of exploring design 

space to optimize the cross section design. 

 

As an added bonus of this process, it would be great if there was a strong correlation 

between the parameter values of the mathematical expressions which results in a good fit 

and specific manufacturing processes or material features. This way, the specific root 

cause of the loss could be identified and direct decisions made about adjusting the design, 

the manufacturing process or the materials selection to optimize the cost and performance 
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based on the actual root cause. This design process could provide some feedback to the 

fab house on where to look to bring a board into closer compliance to a total loss spec. 

 

A feedback based design flow involves the following steps: 

 

1. Measure the S-parameters of the test lines on the coupon 

2. Convert them into a useful form 

3. Select the mathematical expression 

4. Fit the parameters of the mathematical expression to the measured data 

5. Evaluate the quality of the mathematical fit 

6. Interpret the parameters in terms of design, materials or process 

7. Use the parameters in a circuit simulation of the board level interconnects 

8. Adjust the design to balance cost, manufacturability and performance 

 

A key step in this process is converting the raw, measured, S-parameters of various test 

lines into a format from which the material properties can be more easily extracted. This 

means the artifacts from non 50-ohm lines and non-transparent launches are removed.  

 

A variety of techniques are available to accomplish this task. For example, the launches 

can be de-embedded, and then the ports re-normalized. Two lines of different length can 

be measured and the generalized modal S-parameters (GMS) extracted. Or, the 

measurements from multiple length lines can be combined to directly extract the complex 

propagation constant for the interconnect medium using the multi-line approach [12].  

 

These techniques are not the topic of this paper. Instead, in this paper, we explore some 

of the other elements of this process; in particular, the analysis of the S-parameters with 

self normalized ports obtained from both measurement and simulation, and the properties 

of the various loss descriptions. 

 

 

 

Exploring Design Space 
In this study, the simulated or measured 2-port S-parameters for candidate uniform 

stripline transmission lines were created. In most cases, the simulations in this study were 

performed with Simberian’s Simbeor [13].  

 

To be consistent, the following geometry features were used in all simulations: 

 

• Line width = 7 mils 

• Conductor thickness = 0.7 mils ( ½ oz copper) 

• Rectangular cross section 

• Bulk copper conductivity 

• Dielectric thickness above and below the signal conductor = 8 mils 

• The typical interconnect length simulated = 1 inch 

• Nominal dielectric constant @ 1 GHz = 4 

• In all examples, the surface texture was applied to all copper surfaces 
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This results in close to a 50 Ohm line. The maximum return loss from 1 MHz to 40 GHz 

was less than -30 dB in all cases. This means reflections have no impact on the insertion 

loss results. 

 

A simple analysis process was used to quickly identify the features of the mathematical 

expression or measured data.  

 

The time delay of the interconnect, in nsec, was extracted from the unwrapped phase of 

the insertion loss using: 

 

( )( )TD(f )[nsec] 1x unwap phase(S21) / 360 / frequency[GHz] x 1e9= −   

 

Where  

TD(f)  is the time delay of the interconnect in nsec 

S21 is the complex insertion loss 

Frequency is the frequency of each value, in GHz 

 

It should be noted that when unwrapping the phase of the insertion loss to get the phase 

delay, a short enough frequency interval must be used so that the transitions from the 

lower to the upper half of the unit circle can be accurately counted. This is especially 

important when using a log freq increment.  

 

From the time delay and the interconnect length, the effective dielectric constant can be 

calculated from: 

 

( )
2

eff

11.8
Dk f TD(f )[nsec]

Len[in]

 
=  
 

  

 

 

Where 

Dkeff(f) is the effective dielectric constant of the interconnect 

11.8 is the speed of light in air in inches/nsec 

Len is the interconnect length in inches 

TD(f) is the time delay in nsec 

 

The interconnect losses are described by the insertion loss. Assuming that the conductor 

and dielectric losses can be separately described by a resistance per length and a 

conductance per length the insertion loss can be written as 

 

Len
Len 0

0

R (f )
S21(f )[dB] 4.24 x G (f )Z

Z

 
= + 

 
  

Where 

S21 is the insertion loss in dB 
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RLen is the resistance per length 

Z0 is the characteristic impedance 

GLen is the conductance per length 

 

While we may be able to separate the conductor and dielectric losses when synthesizing 

the S-parameters, there is no practical way of separating the conductor and dielectric 

contributions to loss or dispersion from already existing S-parameter data. The egg has 

been scrambled. 

 

This factor creates the most significant challenge when interpreting the S-parameters of a 

uniform transmission line. The impact from both conductor and dielectric mathematical 

expressions are inseparably intertwined in the loss and dispersion. The only hope of 

gaining some insight into their relative contributions lies in their different frequency 

dependences. 

 

Each conductor and dielectric mathematical expressions will contribute a different 

frequency dependence in both loss and dispersion depending on the parameter values 

selected. This is the focus of the analysis here. The analysis of the frequency dependence 

of each loss mathematical expression can only be done as a numerical study, where each 

term can be isolated and the impact on the frequency dependence of loss and dispersion 

evaluated.  

 

The frequency dependence of the insertion loss, in dB, arises from the separate frequency 

dependence of the resistance per length and conductance per length. To first order, the 

resistance should vary roughly with the square root of frequency, dominated by skin 

depth effects and the propagating medium permittivity should vary linearly with 

frequency due to the motion of the dipoles.  

 

It’s possible to quickly identify the frequency dependence of the insertion loss and which 

term dominates by taking the unusual step of plotting the insertion loss, in dB, and 

frequency on a log-log scale and comparing the slope of the curve to a slope of ½ and 

slope of 1. Of course to plot the insertion loss on a log scale, the absolute value of the 

insertion loss must be used.  

 

An example of the insertion loss vs. frequency on a log-log scale for the case of a 

measured 10 inch long stripline in an FR4 type material is shown in Figure 5.  
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Figure 5. Measured insertion loss on a log-log scale with reference lines of slope 1 and 1/2. 

 

 

In this example, the value of a log-log plot is apparent. This clearly shows the skin depth 

related effects dominating at low frequency and the dielectric effects dominating at 

higher frequency. 

 

In the following case studies, each of the mathematical expressions for conductor loss 

and dielectric loss are separately investigated and how the frequency dependence of the 

loss and dispersion vary as some of the parameter values are adjusted. 

 

Case 1: lossless dielectric with smooth copper 

To establish a baseline, the simplest case of a lossless dielectric, with Dk = 4, flat with 

frequency, is used as the laminate with smooth copper which includes the frequency 

dependence of resistance from skin depth. The simulation using Simbeor includes the 

losses from the return plane. 

 

The insertion loss should vary with the square root of frequency, above about 10 MHz, 

where the skin depth drops below the geometric thickness. There will be dispersion due 

to the current redistribution.  

 

To verify this dispersion in the effective dielectric constant is due to the inductance 

varying with frequency, a second simulation was created using a perfect conductor so that 

the skin depth is significantly less than 1 micron at 1 MHz. This effectively makes the 
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current distribution in the simulated frequency range constant and just on the surface of 

the conductors so there should be no dispersion.  

 

Figure 6 shows the results for case 1, giving an indication of the sort of insertion loss and 

dispersion just from smooth copper and a perfect conductor for this 7 mil wide uniform 

transmission line. 

 

 
Figure 6. Insertion loss and dispersion for smooth copper. The square root of frequency is an 

excellent fit to the insertion loss, while the linear dependency with frequency is a poor fit even at the 

highest frequency. 

 

The dispersion from the current re-distribution dominates the effective dielectric constant 

below 1 GHz. Above 5 GHz is it negligible. 

 

 

 

Case 2: Hammerstad mathematical expression for surface 

roughness 

The Hammerstad mathematical expression is an empirical approximation to the  2 

dimensional triangular surface features used by Samuel Morgan [14] and with a linear 

distance up and down over the peaks and valleys that is twice the straight line distance. 

This effectively means the triangles have a 60 degree angle from the surface.  

 

In this example, a lossless dielectric was used but the surface roughness was fit with the 

Hammerstad mathematical expression using three values of the rms surface roughness, 1 

micron, 3 microns and 5 microns. The insertion loss and effective dielectric constant are 

shown in Figure 7. 
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Figure 7. Simulated insertion and effective dielectric constant for the case of lossless dielectric but 

surface roughness loss described by the Hammerstad mathematical equation. 

 

As the rms surface roughness parameter, ∆, increases from 1 micron to 3 microns to 5 

microns, the insertion loss increases steeper than the square root of frequency, but not 

really approaching a linear with frequency dependence. The Hammerstad mathematical 

expression predicts a loss which saturates when the skin depth is very small compared to 

the rms roughness parameter, roughly above 10 GHz in this case. 

 

The dispersion is larger at lower frequency with surface roughness. 

 

Case 3: Modified Hammerstad mathematical expression 

In this expression, the Hammerstad mathematical expression is modified to allow any 

angle for the triangular teeth structures. Rather than the angle, another parameter is the 

roughness factor, the ratio of the total roughened surface distance to the linear distance 

along the surface. Effectively, there is twice as much surface area from the teeth structure 

than just the flat surface. 

 

In this example, the rms roughness was held constant at 1 micron and the scaling factor 

(SF) changed to 2, 4 and 6. With a scaling factor of 2, this is the Hammerstad 

mathematical expression. A scaling factor of 4 and 6, would correspond to an empirical 

fit to a higher effective surface area created by sharper teeth and would cause additional 

power loss increases to 4x and 6x. 

 

As the teeth structure get sharper, and take up more surface area, they will provide a 

larger surface to absorb tangential H field into the surface and the power losses will 

increase. Figure 8 shows the impact of increasing scaling factor for constant 1 micron 

rms peak height.  
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Figure 8. Simulated insertion and effective dielectric constant for the case of lossless dielectric but 

surface roughness losses given by a  modified Hammerstad mathematical expression  in which only 

the scaling factor is increasing for a fixed 1 u rms peak height. 

 

 

In this example, increasing scaling factor means increasing losses from the conductor, 

and more importantly, in some frequency regions, the losses increase close to a linear 

frequency rate. The dispersion also increases in the high frequency region. 

 

Case 4: Huray snowball model 

There are three parameter that define the Huray first principles snowball model: 

 

ai, the radius of the i
th

 sphere, 

AMatte/AFlat, the relative area of a Matte base compared to a Flat base area 

Ni (4πai
2
)/AFlat, the total area of the additional spheres compared to a Flat base area. 

 

 

The total area of the additional spheres  per unit Flat area means more surface area and 

absorption of tangential H fields into the electrodeposited conductor anchor nodules than 

that provided by AMatte/AFlat.   However, each additional loss term is dependent upon 

frequency according to 
2 2

2
1

43
1

2 2

j

i i

i Flat i i

N a

A a a

π δ δ

=

   
+ +   

   
∑  

The factor of 3/2 and the frequency dependence in the denominator occur from the dipole 

approximation for copper snowballs (i.e. to first order they can be modeled as copper 

spheres). 

 

In exploring the impact of these parameters on the loss and dispersion, two ranges are 

considered. In the first example, a fixed ball diameter, 1 micron, and number of balls, 30, 

was used  for various base areas of  (10 microns)
2
, (7 microns)

2
 , (5 microns)

2
 and (3 

microns)
2
. This effectively increases the surface area density for absorption. The smaller 

the base area the higher the expected loss. Figure 9 shows the simulated insertion loss and 

dispersion for these four values of base areas. 
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Figure 9. Simulated results using the Huray snowball model for the case of 30 balls, each 1 micron in 

diameter, with different flat base areas.  I would like to see the code that deduced this chart to verify its 

validity. 

.  

It is interesting to note that as the density of ball area per unit flat area increases, the 

slope of the insertion loss increases and approaches a linear frequency dependence. The 

dispersion is only slightly affected by the density until the density gets very high.  

 

As a second example, the tile base area of (5 microns)
2
 was selected, with 30 balls of 

diameter 2 microns, 1 micron and 0.5 micron.  Again the assumption of uniform ball size 

was made. 

 

As the ball diameter decreases two effects happen. The frequency at which the excess 

loss turns on increases in frequency as it scales with the ball radius to skin depth value. 

Secondly, as the ball diameter decreases, the effective surface area available for 

absorption and loss decreases and the total excess loss decreases. This is related to the 

square of the ball diameter. 

 

These two effects are seen in the simulated examples shown in Figure 10. 

 

 
Figure 10. Simulated insertion loss and dispersion with the Huray snowball model, changing just the 

ball diameter from 2 microns to 1 micron to 0.5 micron but assuming a constant base area of (0.5 

microns)
2
 and uniform size balls. 

 

In this example, it’s clear how sensitive the results are to the ball diameter. This one 

parameter affects when the loss turns on, how much loss and how much dispersion 
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results. Large nodule ball area per unit base area generates a lot of loss and has a big 

impact on dispersion. 

 

These mathematical expressions of loss all point out that it’s the increased roughened 

surface area which most strongly affects the amount of loss from surface texture. This 

suggests that to engineer the lowest loss surface texture while still providing some 

adhesion, a selectively patterned surface should be used. A nominally flat surface should 

be the starting place, with a patterned surface treatment spaced every mil or more with 

large features (small surface area compared to the conductor volume). This would cut the 

surface area by as much as 10x to 20x, reducing the surface power loss by a comparable 

amount. 

 

While the modified Hammerstad mathematical expression and the Huray snowball model 

use different parameters, they both have a parameter which describes a surface deviation 

and a surface area factor. Either approach might be a candidate for comparing to the 

measured loss contribution from surface texture. 

 

For example, using the values of ball diameter of 0.5 microns, number of balls = 40 and 

base area of (9 microns)
2
, the Huray snowball model can be matched with the modified 

Hammerstad expression using the parameters of rms feature of 0.4 microns and surface 

factor 1.23. This match is shown in Figure 11. 

 

 
Figure 11. Huray snowball model (red line) and modified Hammerstadt expression (blue line) with 

roughness correction coefficient matched up to 60 GHz. 
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Case 5: Dielectric loss model: relationship between Dk slope and 

Df 

In the wide band Debye model with the Svensson-Djordjevic approximation, the 

dielectric constant varies linearly with the log of frequency. The slope of the dielectric 

constant with the log of the frequency, is a direct measure of the dissipation factor. In 

fact, the dissipation factor is given by: 

 

( )
2 1

(f ) 0.682 Dk 0.682
Df f slope

Dk(f ) Dk(f ) log(f ) log(f ) Dk(f )

′′ε ∆ −
= = =

−
  

 

In the following example, the five parameters for the wideband Debye model were used: 

 

Dk = 4 

Df = 0.02, 0.01, 0.005, 0.002 

f = 1 GHz 

f1, the low frequency limit = 100 kHz 

f2, the high frequency limit = 100 GHz. 

 

Figure 12 shows the simulated insertion loss and dispersion for the case of a perfect 

conductor but the dielectric properties above. 

 

 
Figure 12. Simulated loss and dispersions for perfect conductor and wide band Debye model where 

only the Df is varied from 0.02, 0.01, 0.005, 0.002. 

 

There are two important features of the wideband Debye model in this example. The 

insertion loss from just dielectric loss, shows a linear dependence on frequency. The 

slope on the log-log scale matches the reference slope of 1. 

 

Secondly, as expected, the slope of the effective dielectric constant over frequency is 

related to the dissipation factor. The lower the dissipation factor, the flatter the dielectric 

constant over frequency and the less the dispersion. Though the vertical scale on the 

graph is linear, for small variations, the log of a number and the number have the same 

relative difference. 
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A Suggested Methodology 
This analysis points out that while it is not possible to directly separate the conductor and 

dielectric loss in the measured response of a transmission line sample, it may be possible 

to find a set of parameters which match the measured performance of measured samples.  

 

The input to a typical model that most simulators understand is: 

 

the cross section parameters: 

h, dielectric thickness 

w, line width 

t, conductor thickness 

 

The conductor loss parameters: 

Copper Conductivity 

Modified Hammerstad model: rms value, scale factor 

Huray snowball model: relative Matte to Flat base area, ball diameter, number of balls 

per unit Flat area 

 

Dielectric loss parameters: 

Dk 

Df 

At f 

f1 low freq limit 

f2 high freq limit 

 

Some insight into the behavior of a sample can be gained by comparing the measured 

response with the simulated response which includes just some of the mathematical 

expression features. The starting place can be the cross section parameters based on the 

known sample properties, the smooth copper losses and the lossless dielectric properties.  

 

The copper conductivity parameter can be matched to the low frequency loss and the Dk 

parameter matched to the 1 GHz measured dielectric constant. Using values of copper 

conductivity and Dk = 4.33, the comparison between measured and simulated responses 

are shown in Figure 13. 
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Figure 13. Example of the measured insertion and dielectric constant for an FR4 type sample 

compared to the simulation using smooth copper and lossless dielectric. Note, for typical samples 

measured in a high volume manufacturing environment, there will be noise, especially at the low 

frequency and high frequency ranges. 

 

It is surprising how much of the dispersion is due to the smooth copper properties. In this 

example, most of the high frequency loss seems to be contributed by the dielectric. This 

suggests that the avenue to lower loss, in the 4-10 GHz range, is by focusing on material 

selection for lower dissipation factor. 

 

The next step is to optimize the dielectric loss to match the insertion loss. Figure 14 

shows the simulation using a dissipation factor of 0.022.  
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Figure 14. Measured insertion loss and dielectric constant with smooth copper and lossy dielectric. 

The slight deviation at the lowest frequency is due to the difficulty of accurately measuring total 

attenuation less than 0.1 dB related to calibration and reproducible, low contact resistance  

connections. 

 

The dispersion in the dielectric constant is seen to be very well described with just 

smooth copper and dielectric loss. As seen in the linear attenuation plot, the smooth 

copper loss and dielectric loss are able to match the measured performance up to about 10 

GHz. Above this value, the loss is larger than predicted. This is probably due to the 

impact of surface texture. In this example, the Huray snowball model is used to match the 

measured performance.  

 

With a little optimization, a set of parameters were found to match the complete 

performance. Figure 15 shows the final match of the measured and simulated response 

for this sample. 
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Figure 15. Final match of the measured response and simulated response using wideband Debye 

model, smooth copper and Huray snowball model. 

 

This same process can be applied to a variety of samples. An example of another 

measured transmission line sample with a low profile (AMatte/AFlat=1) is shown in Figure 

16.  

 

7in Low 

Profile 

Trace 

Correlation

VNA Measurement

Huray Model:

50 uniform spheres,

0.5um radius

5000x

4 µm peak to valley deviation
 

Figure 16. Insertion loss measurements on a 7 inch Low Profile trace as a function of frequency 

(shown in blue) compared to the Huray snowball model (in green) with the further approximations 

AMatte/AFlat≈1 and Ni/AFlat=50 uniform spheres per (100 micron)
2
 area shown in the red hexagonal 

structure at lower left. 
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As a final example, 2-inch and 4-inch long Megtron6 stripline transmission lines, 

courtesy of Molex Corp. were measured. A wideband Debye model with the modified 

Hammerstad expression were fit to the insertion loss and group delay. Figure 17 shows 

the excellent comparison between measured and simulated results. 

 

 
Figure 17. Measured insertion loss and group delay for Megtron6 samples compared with the 

simulated values using a wideband Debye model and a modified Hammerstad approximation with 

values of Dk = 3.7, Df = 0.002 and SR = 0.3 u and RF = 5.  

 

 

 

 

Conclusion 
While it is still not practical to take information obtained directly from a fab vendor and 

turn this into a first principles model which accurately describes the complete 

performance of an interconnect, it is practical, in a variety of material systems to take the 

measured response from a test coupon and fit parameters associated with conductor and 

dielectric loss. 

 

The dielectric loss can be modeled with a wideband Debye model and the surface texture 

of copper can be described with a variety of mathematical expressions. By fitting the 

measured insertion loss and effective dielectric constant, a complete description of a 

transmission line can be extracted from manufacturing test coupons in some samples 

using just a few parameters. 

 

These parameters can be used as input to a variety of popular simulators to create 

scalable transmission line models for any interconnect structure. These parameters also 

may be useful in providing some insight into where to attack for reduced loss. 
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