

# Design Insights from Electromagnetic Analysis of Interconnects

Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com

Front Range Signal Integrity Seminar, Longmont, CO October 3, 2013

# Property rights disclosure

- Copyright © 2013 by Simberian Inc., All rights reserved.
  - THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO SIMBERIAN INC. AND MAY NOT BE REPRODUCED, PUBLISHED OR DISCLOSED TO OTHERS WITHOUT PERMISSION OF SIMBERIAN INC.
- Simberian® and Simbeor® are registered trademarks of Simberian Inc.
  - Other product and company names mentioned in this presentation may be the trademarks of their respective owners.



#### **Outline**

- Introduction
- Decompositional electromagnetic analysis
- Broadband material models
  - Dielectric and roughness models and model identification
  - Nickel model in ENIG plated traces
- Modeling discontinuities
  - Planar transitions control of impedance and skew
  - Vertical transitions localization and crosstalk
- Conclusion
- References and contacts



#### Introduction

- Data links running at bitrates 10-30 Gbps and beyond are becoming the mainstream in the communication and other electronic systems
- Why is design of PCB and packaging interconnects for such systems is a challenging problem?
  - It requires electromagnetic analysis over extremely broad frequency bandwidth from DC to 20-50 GHz
  - No frequency-continuous dielectric models available from laminate manufactures
  - No roughness models available from manufacturers
  - Boards are routed in old-style ways based on rules and approximate models and not on EM analysis
  - Boards are not manufactured as designed large variations and manipulations by manufacturer
- Is it possible to design and build interconnects and have acceptable analysis to measurement correlation from DC to 20-50 GHz systematically?
  - Obviously yes, but only if some conditions are satisfied
  - The conditions are partially covered here and discussed in detail in my tutorial at DesignCon 2013 and in paper presented at EMC 2013 symposium (both available at www.simberian.com)
  - This presentation provides practical examples illustrating how to make decisions on the base of EM analysis
  - Some examples may look counter-intuitive ⊕



# Decompositional analysis of a channel





# Quality of S-parameter models

- Multiports are usually described with S-parameter models
  - Produced by circuit or electromagnetic simulators, VNAs and TDNAs in forms of Touchstone or BB SPICE models
- Very often such models have issues and may be not suitable for consistent frequency and time domain analyses
  - Not sufficient bandwidth and sampling
  - Passivity, reciprocity and causality conditions may be violated
- How to make sure that a model is suitable for analysis?
  - The answer is one of the key elements for design success
  - To make the decision easier, Passivity, Reciprocity and Causality quality metrics has been introduced in 2010 and implemented in Simbeor software
  - See references on quality of S-parameters at the end of presentation
- All models for this presentation are created with Simbeor software
  - Adaptively sampled, reciprocal, passive and causal
  - With bandwidth 50 GHz for 30 Gbps, 16 ps rise time



#### **Broadband material models**

- The largest part of interconnects are transmission line segments
- Models for transmission lines are usually constructed with a quasi-static or electromagnetic field solvers
  - T-lines with homogeneous dielectrics (strip lines) can be effectively analysed with quasi-static field solvers
  - T-lines with inhomogeneous dielectric may require analysis with a fullwave solver to account for the high-frequency dispersion
- Accuracy of transmission line models is mostly defined by availability of broadband dielectric and conductor roughness models
- This is the most important elements for design success

10/8/2013



#### Causal dielectric models for PCB and PKG

Multi-pole Debye-Lorentz (real and complex poles)

$$\varepsilon(f) = \varepsilon(\infty) + \sum_{n=1}^{N} \frac{\Delta \varepsilon_n}{1 + i \frac{f}{fr_n}} + \sum_{k=1}^{K} \frac{\Delta \varepsilon_k \cdot fr_k^2}{fr_k^2 + 2i \cdot f \cdot \frac{\delta_k}{2\pi} - f^2}$$

Requires specification of value at infinity and poles/residues/damping or DK and LT at multiple frequency points

Wideband Debye (Djordjevic-Sarkar)

$$\varepsilon(f) = \varepsilon_r(\infty) + \frac{\varepsilon_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m2} + if}{10^{m1} + if}\right]$$

Continuous-spectrum model Requires specification of DK and LT at one frequency point

- Models for dielectric mixtures (Wiener, Maxwell-Garnet, ...)
- Models for anisotropic dielectrics (separate definition of Z, and XY-plane components of permittivity tensor)

Parameters of the causal models are not available from manufacturers!



# Causal roughness models

■ Modified Hammerstad (red), Simbeor (black) and Huray's snowball (blue) Kh2j Kh2j Kh2j Knj

See references in the papers (Shlepnev, EMC2012 and DC2012)



- Causal if correction is applied to conductor surface impedance operator
- Where to get the model parameters?
  - SR (delta) and RF for Simbeor and MHCC
  - Number of balls, ball size and tile area for Huray's model



### Material parameters identification with generalized modal S-parameters (GMS-parameters)



Magnitude(S), [dB] 10 05 Apr 2013, 15:35:11, Simberian Inc. Frequency, [GHz] \* A:S[1,1]; \*\* A:S[1,2]; \*\* B:S[1,1]; \*\* A:Measured.DifferenceStrip.Filtered; B:Computed.6 inch.Simulation(1); Magnitude(S), [dB] Group Delay, [ns] 1.05

 $-\blacksquare$  A:Sm[ln1(M1),ln2(M1)]  $\blacksquare$  -;  $-\blacksquare$  B:Sm[ln1(M1),ln2(M1)]  $+\blacksquare$  -;

A:J5J6\_SE\_stripline\_2inch.s2p; B:J8J7\_SE\_stripline\_8inch.s2p;





05 Apr 2013, 15:36:25, Simberian Inc.

-10

-20

35

# Board for material models identification example



CMP-28 validation board designed and investigated by Wild River Technology http://wildrivertech.com/

From Isola FR408 specifications

| Dk, Permittivity<br>(Laminate & prepreg as laminated)<br>Tested at 56% resin | A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline) | 3.69<br>3.66<br>3.67<br>3.66<br>3.65           |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Df, Loss Tangent<br>(Laminate & prepreg as laminated)<br>Tested at 56% resin | A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline) | 0.0094<br>0.0117<br>0.0120<br>0.0127<br>0.0125 |

10.5-11 mil wide strip lines, Use measured S-parameters for 2 segments ( 2 inch and 8 inch)

10/8/2013



# Measured S-parameters for 2 and 8 inch segments





# GMS-parameters computed from the original S-parameters



Reflection in generalized modal S-parameters is exactly zero – makes material model identification much easier!



Material models for strip line analysis -



First, try to use material parameters from specs



Wideband Debye model can be described with just one Dk and LT

A. @ 100 MHz (HP4285A)

A. @ 100 MHz (HP4285A)

B. @ 1 GHz (HP4291A)

C. @ 2 GHz (Bereskin Stripline)

D. @ 5 GHz (Bereskin Stripline)

E. @ 10 GHz (Bereskin Stripline)

C. @ 2 GHz (Bereskin Stripline)

D. @ 5 GHz (Bereskin Stripline)

E. @ 10 GHz (Bereskin Stripline)

B. @ 1 GHz (HP4291A)

$$\varepsilon(f) = \varepsilon_r(\infty) + \frac{\varepsilon_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m2} + if}{10^{m1} + if}\right]$$

Conductor is copper, no roughness in specs



3.69

3.66

3.67

3.66

3.65

0.0094

0.0117

0.0120

0.0127

0.0125

# Results with the original material models

The original model produces considerably lower insertion losses (GMS IL) above 5 GHz and smaller group delay (GMS GD) at all frequencies:



**Two options:** 1) Increase Dk and LT in the dielectric model;

2) Increase Dk in dielectric model and model conductor roughness



# Option 1: Increase Dk and LT in dielectric model (no conductor roughness)

Good match with: Dk=3.83 (4.6% increase), LT=0.0138 (18% increase), Wideband Debye model



Good match, but what if conductors are actually rough?



# Option 2: Increase Dk and model conductor roughness (proper modeling)

Dielectric: Dk=3.8 (3.8% increase), LT=0.0117 (no change), Wideband Debye model Conductor: Modified Hammerstadt model with SR=0.32 um, RF=3.3



Excellent match and proper dispersion and loss separation!
This model is expected to work for strips with different widths



#### Can we use models for another cross-section?

□ Differential 6 mil strips, 7.5 mil distance
 GD is close, but the loss is different:





Which one is better?

About 10% difference for medium-loss dielectric



# Plated nickel model identification

Adjust Ni model parameters to match measured and computed GMS-parameters for 50 mm segment of microstrip line, strip width 69 um, thickness 12 um

ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Substrate dielectric DK=3.x and LT=0.01x at 1 GHz, wideband Debye model

Landau-Lifshits model for Nickel: Mul=5.7, Muh=1.4, f0=2.5, dc/f0=0.22, relative resistivity 3.75

10/8/2013



Measured.50 mm SE MSL Generalized D to C.Simulation1, Sm[ln1(M1),ln2(M1)]
 Computed.50 mm SE MSL.Simulation1, Sm[ln1(M1),ln2(M1)]



Measured.50 mm SE MSL Generalized D to C.Simulation1, Sm[ln1(M1),ln2(M1)]
 Computed.50 mm SE MSL.Simulation1, Sm[ln1(M1),ln2(M1)]





© 2011 Teraspeed Consulting Group LLC © 2011 Simberian Inc.

# S-parameters of test structures

Nickel: resistivity 6.46e-8 Ohm\*meter, Landau-Lifshits Permeability Model: Mul=5.7, Muh=1.4, f0=2.5, dc/f0=0.22





Measured - solid lines Modeled – stars and circles



### 5 Gbps signal in structure with 150 mm line





### 12 Gbps signal in structure with 150 mm line



See more in Y. Shlepnev, S. McMorrow, Nickel characterization for interconnect analysis. - Proc. of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, August, 2011, p. 524-529. (also available at www.simberian.com)



# Summary on material models

- Provided example illustrates typical situation and importance of the dielectric and conductor models identification
- Proper separation of loss and dispersion effects between dielectric and conductor models is very important, but not easy task
  - Without proper roughness model, dielectric models is dependent on strip width
  - If strip width is changed, difference in insertion loss predicted by different models may have up to 20-30% for low-loss dielectrics
  - See examples for Panasonic Megtron 6 and Nelco 4000 EP at "Which one is better?..." presentation and "Elements of decompositional analysis..." tutorial from DesignCon 2013 (available at www.simberian.com)
- In addition, PCB materials are composed of glass fibber and resin and have layered structure
  - Anisotropy: difference between the vertical and horizontal components of the effective dielectric constant
  - Weave effect: resonances and skew
  - All that properties can be modelled in Simbeor software

10/8/2013



#### Planar transitions: Bends

- Design goal is to minimize the reflection loss |Sii|
- Have additional capacitance and inductance, uncertainty in trace length
- It is difficult to make them as bad as some other discontinuities
- Potentially multiple bends may cause problems
- Remove of excessive metallization helps to reduce the risks



See more in App Note #2008\_05 at http://www.simberian.com/AppNotes.php





# Planar transitions to wider strips or pads

- Optimize to have target characteristic impedance at wider section
- Example of transition from 13 mil (~50 Ohm) to 30 mil wide microstrip
  - Create 30 mil wide 50 Ohm transmission line:





# Transition to wide strip 3D analysis

Transition from 13 mil MSL to 60 mil long section of 30 mil wide
MSL CMD 38 stockup



Cut-out reduced the reflection as expected, but may create another problem – possible coupling to the cavity below (SI and EMI); How to deal with that?

10/8/2013



26

# Localizing the cavity below the cut-out

□ 6 vias 30 mil apart, stitching the reference plane with the next plane





# Transition to wider strip: TDR

16 ps Gaussian step, 1 inch of 50-Ohm MSL on each side



See more on optimization of transitions for AC coupling caps in App Notes #2008 02 and 2008 04 at http://www.simberian.com/AppNotes.php



# Differential transitions

Transitions Design Goals: Minimize S[D1,D1], NEMT, FEMT Maximize |S[D1,D2]| and make GD flat

#### Notation used here (reciprocal):



S[D1,D1] and S[D1,D2] – differential mode reflection and transmission

S[D1,C1], S[D2,C2] – **near end mode transformation** (**NEMT**) or transformation from differential to common mode at the same side of the multiport

S[D1,C2], S[D2,C1] – **far end mode transformation (FEMT)** or transformation from differential mode on one side to the common mode on the opposite side of the multiport

#### Alternative forms:

$$Smm = \begin{bmatrix} S_{DD11} & S_{DD12} & S_{DC11} & S_{DC12} \\ S_{DD12} & S_{DD22} & S_{DC21} & S_{DC22} \\ S_{DC11} & S_{DC21} & S_{CC12} \\ S_{DC12} & S_{DC22} & S_{CC12} & S_{CC22} \end{bmatrix}$$

$$Smm = \begin{bmatrix} S_{1,1}^{dd} & S_{1,2}^{dd} & S_{1,1}^{dc} & S_{1,2}^{dc} \\ S_{1,2}^{dd} & S_{2,2}^{dd} & S_{2,1}^{dc} & S_{2,2}^{dc} \\ S_{1,1}^{dc} & S_{2,1}^{dc} & S_{1,1}^{cc} & S_{1,2}^{cc} \\ S_{1,2}^{dc} & S_{2,2}^{dc} & S_{1,2}^{cc} & S_{2,2}^{cc} \end{bmatrix}$$

See more on definitions in Simberian App Note #2009\_01



# Transitions from differential to single

Maintain the target differential impedance in every cross-section



See more on transitions in App Note #2013\_04

Or minimize the discontinuity in abrupt transition (similar to single bend)





CMP-28 stackup, also used in skew analysis

100 mil diff MSL + split + 2 100 mil SE MSL + split + 100 mil diff MSL



# Differential bends: Qualitative analysis

- Skew or mode transformation in bends is usually attributed to differences in lengths of the traces
  - That is how it is usually modeled in traditional SI software that uses static field solvers to extract t-line parameters and ignore the discontinuities like bends
- According to that measure the arched bend is better than two 45-degree and two 45-degree bend is better than 90degree bend
- Is this correct statement?
  - Investigation is provided in App Note #2009\_02 and here are some results...



w is strip width and s is separation



### Differential reflection and transmission

#### Differential reflection S[D1,D1]



 $D1 \longrightarrow D2$ 

C1 — [Smm] — C2

Differential transmission S[D2,D1]



No difference for practical applications!



# Mode transformation (skew and EMI)





#### FEMT S[D1,C2]







#### A:Project1.One90.Simulation1; B:Project1.Two45.Simulation1; C:Project1.OneArched.Simulation1; ★ A:Smm[D1,C2]; B:Smm[D1,C2]; C:Smm[D1,C2];



More modal transformations at 90-degree bend!



# Practical example of skew analysis for nets with microstrip (MSL) arched bends

- 8-layer stackup from CMP-28 benchmark board from Wild River Technology, <a href="http://wildrivertech.com">http://wildrivertech.com</a>
- Material models are identified with GMS-parameters
- Two 8 mil strips 8 mil apart in layer TOP (microstrip)



We investigate two bends with Rb=108 mil and Rb=28 mil (center line)



Both bends have identical 25 mil difference in strip lengths



27 Sep 2013, 16:18:16, Simberian Inc.

3D View Mode (press <E> to Edit).

#### Effect of bend radius

Very similar modal transformations in larger and smaller bends!









FEMT is definitely a problem (skew, EMI)!



# MSL link with 4 right bends – SE TDT



#### Single-ended TDT, 0.5 V 16 ps Gaussian step





## MSL link with 4 right bends – MM TDT



#### Mixed-mode TDT, 0.5 V 16 ps Gaussian step





# MSL link with 4 right bends: "Skew" view on S-parameters

■ How to fix it? – match length?









# MSL link with 4 right bends and serpentine – SE TDT



#### Mixed-mode TDT, 0.5 V 16 ps Gaussian step





## MSL link with 4 right bends and serpentine:

"Skew" view on S-parameters

### Length match did not fix the problem!









10/8/2013

MSL link with 4 right bends and serpentine:

"Skew" view on S-parameters

## Actually made it worse:MT at lower frequencies





0.1 in





# MSL link with 4 right bends and serpentine – MM TDT



Length match in microstrip link clearly did not work! May be it was not done properly?



### MSL link with 2 right and 2 left bends – SE TDT

#### Single-ended TDT, 0.5 V 16 ps Gaussian step 8/8/8 A:MSL.Link\_2Right\_2Left.Simulation(1); B:MSL.Straight.Simulation(1); V, [V]



The best we can do, but did it solver the problem?

10/8/2013



# MSL link with 2 right + 2 left bends: "Skew" view on S-parameters

Still problem with insertion loss and mode transformation!



0.1 in







# MSL link with 2 right + 2 left bends and serpentine – MM TDT



Length match in microstrip link does not work? Let's try to figure out why...



### MSL back-to-back right and left bends



A:MSL:RightLeftTest.Simulation(1); B:MSL:Right20Left20Test.Simulation(1);



Only small close complimentary bends reduce the mode transformation and skew and EMI!





46



# Why length matching does not work for microstrip lines?

Energy along the coupled MSL propagate in even and odd modes and they have different propagation velocity or group delay:



Will length compensation work if no difference in mode velocity (strip lines)? ... Depends on how you do it – see Simbeor FRSI examples on skew in diff strips...



Practical example of length matching



### Cross-talk in vias

- 8-layer stackup from CMP-28 benchmark board from Wild River Technology, http://wildrivertech.com
- Dielectric and conductor models are identified with GMS-parameters

```
ច់ក្តីក្នុំ Materials: T=20[°C],...
    10Z COPPER", RR=1, SR=0.32, RF=3.3, RM=Original

▼PLATED_10Z_COPPER", RR=1, SR=0.32, RF=3.3, RM=MHCC

    FR-408HR", Dk=3.83, LT=0.0117, PLM=WD, Dk(0)=4.29, Dk(inf)=3.63
    "Soldermask", Dk=3.7, LT=0.02, PLM=WD, Dk(0)=4.46, Dk(inf)=3.37
1 | Signal: "TOP", T=2, Ins="Air", Cond="PLATED_10Z_COPPER"
    2 | Medium: T=7.4, Ins="FR-408HR", DIE 003
   3| Plane: "PLANE_2", Cond="10Z_COPPER", T=1.2, Ins="FR-408HR"
    4 | Medium: T=12, Ins="FR-408HR", DIE 005
    5| Signal: "SIGNAL_3", T=1.2, Ins="FR-408HR", Cond="10Z_COPPER"
    6 | Medium: T=10, Ins="FR-408HR", DIE 007
   7 | Plane: "PLANE M1", Cond="10Z COPPER", T=1,2, Ins="FR-408HR"
    8 | Medium: T=21, Ins="FR-408HR", DIE 008
   9 | Plane: "PLANE M2", Cond="10Z COPPER", T=1,2, Ins="FR-408HR"
    10 | Medium: T=10, Ins="FR-408HR", DIE 009
    11 | Signal: "SIGNAL 4", T=1,2, Ins="FR-408HR", Cond="10Z COPPER"
    12 | Medium: T=12, Ins="FR-408HR", DIE 011
   13 | Plane: "PLANE 5", Cond="10Z COPPER", T=1,2, Ins="FR-408HR"
    14 | Medium: T=7.4, Ins="FR-408HR", DIE 013
   ■ 15 | Signal: "BOTTOM", T=2, Ins="Air", Cond="PLATED 10Z COPPER"
```





## Single-ended vias – case 1

- Two coupled vias in a 150 x 150 mil area caged with PEC wall (stitching vias)
- □ Vias are 20 mil apart, antipad diameters 40 mil, 13 mil MSL;
- The first cage resonance is at about 10 GHz (half wavelength in dielectric)





## Single-ended vias – case 2

- □ Two un-coupled vias in a 150 x 150 mil area caged with PEC wall (stitching vias )
- □ Vias are 60 mil apart, antipad diameters 40 mil
- Separation reduced NEXT below 25 GHz, but FEXT is increased above 10 GHz vias are coupled through the cavity (may be the whole board)!







## Single-ended vias – case 3

- Two shielded vias in a 150 x 150 mil area caged with PEC wall (stitching vias)
- Vias are 60 mil apart, antipad diameters 40 mil, stitching vias are 20 mil from the signal vias – localized up to about 30 GHz
- No cross-talk due to the localization also models for such vias do not depend on the caging or simulation area!





## Cross-talk in single-ended vias

#### **NEXT**

A:Project(1).2Sinqle(1).Simulation(1); B:Project(1).2Sinqle(2).Simulation(1); C:Project(1).2SinqleShielded.Simulation(1);



#### **FEXT**

A:Project(1).2Sinqle(1).Simulation(1); B:Project(1).2Sinqle(2).Simulation(1); C:Project(1).2SingleShielded.Simulation(1);





# SE vias cross-talk on TDT: 0.5 V, 16 ps Gaussian step



Are localized vias also optimal? – see FRSI via x-talk example at www.kb.simberian.com



#### Cross-talk in differential vias

Two coupled differential vias in a 120 x 120 mil area caged with PEC wall Vias are 30 mil apart, antipad 25x55 mil, traces 8 mil MSL, 8 mil separation; The first cage resonance is at about 12 GHz (half wavelength in dielectric) Stackup from CMP-28 board, Wild River Technology http://wildrivertech.com



#### Three cases:







55

### Cross-talk in differential vias

#### **NEXT**

A:Project(1).2DiffVias(1).Simulation(1); B:Project(1).2DiffVias(2).Simulation(1);



#### **FEXT**

A:Project(1).2DiffVias(1).Simulation(1); B:Project(1).2DiffVias(2).Simulation(1); C:Project(1).2DiffViasShielded.Simulation(1);





# Differential vias cross-talk on TDT: 0.5 V, 16 ps Gaussian step



Are localized vias also optimal? – see FRSI via x-talk example at www.kb.simberian.com



## Benchmarking or validation

- How to make sure that the analysis works? Validation boards!
- Consistent board manufacturing is the key for success
  - Fiber type, resin content, copper roughness must be strictly specified or fixed!!!
- Include a set of structures to identify one material model at a time
  - Solder mask, core and prepreg, resin and glass, roughness, plating,...
- Include a set of structures to identify accuracy for transmission lines and typical discontinuities
  - Use identified material models for all structures on the board consistently
  - No tweaking discrepancies should be investigated
- Use VNA/TDNA measurements and compare both magnitude and phase (or group delay) of all S-parameters



### Example of benchmarking boards

PLRD-1 (Teraspeed Consulting, DesignCon 2009, 2010)



Isola, EMC 2011, DesignCon 2012



10/8/2013

CMP-08 (Wild River Technology & Teraspeed Consulting, DesignCon 2011)



CMP-28, Wild River Technology, DesignCon 2012



### Conclusion

- Validate all ideas with EM analysis
- Build only things that can be reliably analyzed!
- Decompositional analysis is the fastest and most accurate way to simulate interconnects ONLY IF
  - All S-parameter models in the link are qualified

10/8/2013

- Material parameters are properly identified
- Interconnects are designed as localized waveguides
- Manufacturer, measurements and models are benchmarked
- Examples created for this presentation are available at www.kb.simberian.com (use FRSI keyword)



### Contact and resources

Yuriy Shlepnev, Simberian Inc.,

shlepnev@simberian.com

Tel: 206-409-2368

- Webinars on decompositional analysis, S-parameters quality and material identification <a href="http://www.simberian.com/Webinars.php">http://www.simberian.com/Webinars.php</a>
- Simberian web site and contacts <u>www.simberian.com</u>
- Demo-videos <a href="http://www.simberian.com/ScreenCasts.php">http://www.simberian.com/ScreenCasts.php</a>
- App notes <a href="http://www.simberian.com/AppNotes.php">http://www.simberian.com/AppNotes.php</a>
- □ Technical papers <a href="http://kb.simberian.com/Publications.php">http://kb.simberian.com/Publications.php</a>
- Presentations <a href="http://kb.simberian.com/Presentations.php">http://kb.simberian.com/Presentations.php</a>
- Download Simbeor® from <u>www.simberian.com</u> and try it on your problems for 15 days

