Nickel Characterization for Interconnect Analysis

Y. Shlepnev, Simberian Inc.
S. McMorrow, Teraspeed Consulting Group LLC
Property rights disclosure

“PROPERTY OF TERASPEED CONSULTING GROUP LLC”

Information contained in this document is not to be reproduced in any form without permission of Teraspeed Consulting Group LLC. Any information in this document is proprietary and may not be used or disclosed without the express permission of Teraspeed Consulting Group LLC.

“CONFIDENTIAL PROPERTY OF TERASPEED CONSULTING GROUP LLC”

This document includes valuable trade secrets. Unauthorized disclosure of use of this document may violate the Uniform Trade Secrets Act.
Property rights disclosure

- Copyright © 2011 by Simberian Inc., All rights reserved.
 - THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO SIMBERIAN INC. AND MAY NOT BE REPRODUCED, PUBLISHED OR DISCLOSED TO OTHERS WITHOUT PERMISSION OF SIMBERIAN INC.

- Simberian® and Simbeor® are registered trademarks of Simberian Inc.
 - Other product and company names mentioned in this presentation may be the trademarks of their respective owners.
Outline

- Nickel characterization at microwave frequencies
- Anomalies in ENIG plated interconnects
- Identification of nickel parameters
 - GMS-parameters extraction from measured data
 - Electromagnetic model for plated traces
 - Landau-Lifshits model for ferromagnetic metal
 - Nickel parameters identification
- Effect of Nickel on multi-gigabit digital signals
- Conclusion
Nickel characterization at microwave frequencies

- Results from different authors show drop in permeability of nickel at microwave frequency range – though the data are inconsistent due to differences in the identification techniques and differences in the investigated material.

Plated Nickel effect: Case 1

Anomaly in attenuation for case of thin Au layer over Ni is clearly visible between 2 and 4 GHz (black curve)

Nickel modeled as non-dispersive metal with permeability varying from 1 to 100 – no anomaly observed in such model

Effect of nickel plating on 10 Gbps signal degradation is shown experimentally

Figure 13: Measured loss per inch for Ag plating, OSP, electroplated 30 μinches Au and 15 μinches Au, soldermask and immersion 5 μinches Au [6].
Plated Nickel effect: Case 2

Anomaly in attenuation for case of Au layer over Ni is clearly visible between 1 and 3 GHz (red curve)

Simulation shows substantial differences in the insertion loss (black curve)

Fig. 10. Simulation and measurements of differential pairs with ENIG and OSP finishes applied.
Plated Nickel effect: Case 3

Anomaly in attenuation for case of Au layer over Ni is clearly visible between 1 and 5 GHz (magenta curve)

Simulation did not reproduce the anomaly

From Internal Rogers Corporation study, “Increased Circuit Loss due to Ni/Au”, Dr. Al Horn, January 2006.
Plated Nickel effect: Case 3.1

Fig. 2. 3-D HFSS model to obtain effective conductivity of the Au–Ni–Cu metal system. Surface roughness is considered.

Fig. 5. Calibrated and HFSS simulated insertion loss of a 1-in long 50-Ω microstrip.
Plated Nickel effect: Case 4

- S-parameters of single-ended microstrip lines with ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Anomaly in attenuation around 2.7 GHz – cannot be reproduced with regular metal models

S-parameters for three structures with 100 mm microstrip line segments and for four structures with 150 mm segments are plotted
Plated Nickel effect: Case 4

- S-parameters of single-ended microstrip lines with ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Anomaly in group delay around 2.7 GHz - not previously reported!

Cannot be reproduced with regular metal model

Group delays for three structures with 100 mm microstrip line segments and for four structures with 150 mm segments are plotted.
Plated Nickel effect: Case 4

- S-parameters of single-ended microstrip lines with ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Structures with strip lines did not show any anomaly in IL and GD – it is clearly the effect of plating

Strip line structures can be used to identify dielectric properties

Dielectric parameters were identified with GMS-parameters of the strip line structures as wideband Debye model with DK=3.x and LT=0.01x at 1 GHz
Plated Nickel effect: Case 5

- S-parameters of differential microstrip lines with ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Anomaly in attenuation around 2.7 GHz – cannot be reproduced with regular metal models

Differential S-parameters for three structures with 100 mm microstrip line segments and for one structure with 150 mm segments are plotted.
Plated Nickel effect: Case 5

- S-parameters of differential microstrip lines with ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper

Anomaly in group delay around 2.7 GHz - not previously reported!

Cannot be reproduced with regular metal model

Differential group delays for three structures with 100 mm microstrip line segments and one structure with 150 mm segments are plotted
Structures for Nickel Model Identification

- Two structures suitable for the identification – contain 100 mm and 150 mm segments of microstrip line – both structures show anomalies around 2.7 GHz

ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper
Microstrip width 74 um, thickness 15 um, substrate 30 um, wideband Debye model
$\varepsilon_k=3.x$ and $\tan\delta=0.01x$ at 1 GHz
Anomaly in IL and GD is clearly due to Nickel plating

- Deviation 2-3 dB from Insertion Loss expected with regular conductor
- Deviation 40-60 ps from Group Delay expected with regular conductor

ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper Microstrip width 69 um, thickness 12 um, substrate 30 um, wideband Debye dielectric model: $\varepsilon_r=3.0$ and $\alpha=0.01\varepsilon_r$ at 1 GHz

GMS-parameters (reflection-less) can be extracted from these two models for identification
Generalized Modal Scattering (GMS) Parameters

- S-parameters of reflective structures with 100 mm and 150 mm segments of microstrip line can be converted into GMS-parameters of 50 mm segment.

GMS-parameters are noisy at high frequencies due to non-identities of probes/launches and cross-sections of two test structures (see more on sensitivity in app note #2010_03, www.simberian.com)
Landau-Lifshits Model of Ferromagnetic Metal

- Magnetic permeability dispersion equations are derived from description moving boundaries of oppositely magnetized layers in ferromagnetic metal

\[\mu(f) = \mu_h + (\mu_l - \mu_h) \cdot \frac{f_0^2 + i \cdot f \cdot \gamma}{f_0^2 + 2i \cdot f \cdot \gamma - f^2} \]

\(\mu_l \) – permeability at low frequencies; \(\mu_h \) – permeability at high frequencies;
\(f_0 \) – resonance frequency [Hz]; \(\gamma \) – damping coefficient [Hz]

- Usable at microwave frequency band
- Lorentz model may be also acceptable for resonance description (2-nd order Debye)
- Can be combined with Debye model at lower frequencies and Lorentz model at the millimeter frequencies
Electromagnetic model of microstrip line

- Hybrid model has been constructed to simulate segment of transmission line
- Method of Lines (MoL) is used for multi-layered dielectric and plane layer – produced grid Green’s function (GGF) (*)
- Multi-layered conductor interior meshed with Trefftz-Nikol’skiy finite elements and matched with the GGF (*)
- Method of simultaneous diagonalization is used to extract modal and per unit length parameters of microstrip line (*)

(*) References are in the paper
Model is implemented in electromagnetic signal integrity software Simbeor 2011 – available at www.simberian.com
Plated Nickel Model Identification

- Adjust Ni model parameters to match measured and computed GMS-parameters for 50 mm segment of microstrip line, strip width 69 um, thickness 12 um

ENIG finish with about 0.05 um of Au and about 6 um of Ni over the copper
Substrate dielectric DK=3.x and LT=0.01x at 1 GHz, wideband Debye model
Landau-Lifshits model for Nickel: Mul=6, Muh=2, f0=2.6, dc/f0=0.18, relative resistivity 6
Identified Model for Plated Nickel

- Resistivity 1.0e-7 Ohm*meter
- Landau-Lifshits Permeability Model: Mul=6, Muh=2, f0=2.6, dc/f0=0.18

May be further refined with a dedicated experiment with more defined geometry.
Effect of nickel on t-line parameters

- We can observe decrease of group delay and increase in attenuation per unit length
Effect of nickel on t-line parameters

- The effect is less visible on the characteristic impedance and effective dielectric constant.
S-parameters of test fixtures

- Nickel: resistivity 1.0e-7 Ohm*meter, Landau-Lifshits Permeability Model: Mul=6, Muh=2, f0=2.6, dc/f0=0.18

![Graph showing insertion loss and group delay for 100 mm and 150 mm line lengths.](image)
Possible sources of discrepancies

- Simulated – rectangular shape with 0.05 um of Au/6 um of Ni/9 um of Cu
- Actual structure has irregular shape – not even trapezoidal

Strip bottom: RMS roughness 0.6-1.2, Roughness factor 2.5 – should be defined formally with profilometer measurements
Plated Nickel Model Identification (2)

- Adjust Ni model parameters to match measured and computed GMS-parameters for 50 mm segment of microstrip line, strip width 69 um, thickness 12 um

ENIG finish with about 1 um of Ni over the copper
Substrate dielectric DK=3.x and LT=0.01x at 1 GHz, wideband Debye model
Landau-Lifshits model for Nickel: $\mu_l=5.7$, $\mu_h=1.4$, $f_0=2.5$, $dc/f_0=0.22$, relative resistivity 3.75
Identified Model for Plated Nickel (2)

- Resistivity 6.46×10^{-8} Ohm*meter (conductivity 1.55×10^7 S/m)
- Landau-Lifshits Permeability Model: $\mu_l = 5.7$, $\mu_h = 1.4$, $f_0 = 2.5$, $dc/f_0 = 0.22$

May be further refined with a dedicated experiment with more defined geometry
S-parameters of test fixtures

- Nickel: resistivity 6.46×10^{-8} Ohm*meter, Landau-Lifshits Permeability Model: $\mu_l = 5.7$, $\mu_h = 1.4$, $f_0 = 2.5$, $dc/f_0 = 0.22$
3.125 Gbps signal in structure with 150 mm line

Measured

In-phase Signal

Normalized Amplitude

Time (s) $\times 10^{-10}$

Modeled

In-phase Signal

Normalized Amplitude

Time (s) $\times 10^{-10}$
5 Gbps signal in structure with 150 mm line
8 Gbps signal in structure with 150 mm line

Measured

![Measured In-phase Signal](image1.png)

Modeled

![Modeled In-phase Signal](image2.png)
10 Gbps signal in structure with 150 mm line

Measured
In-phase Signal

Modeled
In-phase Signal
12 Gbps signal in structure with 150 mm line

Measured
In-phase Signal

Modeled
In-phase Signal
Conclusion

- Resonant behavior of interconnects made of copper plated with nickel and gold (ENIG finish) has been reported
 - Resonance at about 2.7 GHz shows up on insertion loss as well as on group delay graphs and cannot be simply explained
 - The resonance is attributed to ferromagnetic properties of nickel layer
- Electromagnetic model of copper microstrip line segment plated with Ni and Au has been constructed
- Landau-Lifshits (L-L) ferromagnetic metal model is used to simulate nickel in the multi-layered conductor
- Parameters of the L-L model are identified by matching measured and computed GMS-parameters of line segment
- Use of accurate Nickel models increases confidence in modeling of ENIG-finished interconnects
Be sure to visit us:

- Simberian Inc.
 - www.simberian.com
- Teraspeed Consulting Group LLC
 - www.teraspeed.com