

S-PARAMETER QUALITY METRICS AND ANALYSIS TO MEASUREMENT CORRELATION

Anritsu envision : ensure

VNA Measurement S-Parameter Quality Metrics

S-Parameter Quality Metrics – Quality is important /Inritsu envision: ensure

- Reciprocity
 - Forward and reverse transmission are equal in both Magnitude and Phase
 - VNA's have excellent Reciprocity because of the architecture
 - More of an issue for TDR's and scopes than VNA because of trigger jitter

Passivity

- The channel must be passive and have loss
- Calibration, De-embedding and contact repeatability can effect passivity
- Verify with high quality low loss thru airline (not cal thru!)

Causality

- All VNA's have causality issues.
- Incomplete DC to Daylight data will cause S-Parameters to be non-causal.
- This shows up as output energy occurring before the input stimulus in the time domain
- Verify with S-Parameter CCW rotation on a polar chart in the frequency domain or look for energy in the time domain for t<0

S-Parameter Metrics – Causality

```
/Inritsu envision : ensure
```

- Basic causality is always *impacted* by available finite bandwidth.
- Note the signal levels for t<0.
- Bandwidth & Window Choices Affect Causality and Resolution

VNA BW (Frequency Span) effects causality

S-Parameter Metrics – Passivity

/Incitsu envision : ensure

- Passivity problems occur when it appears a passive device has gain
- Receiver saturation issues can cause passivity issues during calibration or with the measurement
- De-embedding is often the problem. Small errors can cause large simulation errors.
- This is most prevalent in fixtures with high Insertion Loss and low Insertion Loss DUT's

• Having a wide range of extraction methods for de-embedding can be an advantage

Analysis to Measurement Correlation

Introduction

- Design of PCB and packaging interconnects for data links running at bitrates 28-32 Gbps and beyond is a challenging problem:
 - It requires electromagnetic analysis over extremely broad frequency bandwidth from DC to 40-50 GHz
 - No frequency-continuous dielectric models available from manufactures
 - No conductor roughness models available from manufacturers
 - Boards are not manufactured as designed large variations and manipulations by manufacturers
 - Making accurate measurements over this bandwidth is very difficult
- Is it possible to design interconnects and have acceptable analysis to measurement correlation from DC up to 40-50 GHz systematically?

Analysis correlates with measurements if...

- 1) Quality of S-parameter models is ensured
- 2) Broadband material models are identified or confirmed
- 3) Simulation of all elements in isolation is possible or coupling is accounted
- 4) Models are validated with measurements

/O Buff Model

Local Chip

Transitions

(1) Quality of S-parameter models

- Multiports are usually described with S-parameter models
 - Produced by circuit or electromagnetic simulators, VNAs and TDNAs in forms of Touchstone or BB SPICE models
- Very often such models have issues and may be not suitable for consistent frequency and time domain analyses
 - Bandwidth deficiency and discreteness
 - Model distortions leading to passivity, reciprocity and causality violations
- How to make sure that a model is suitable for analysis?
 - Use formal quality metrics...

Quality estimation theory is covered in webinar #1 at http://www.simberian.com/Webinars.php

Good S-parameter Models of Interconnects

- Must have sufficient bandwidth matching signal spectrum
- Must be **appropriately sampled** to resolve all resonances
- Must be **passive** (do not generate energy)

 $P_{in} = \overline{a}^* \cdot \left[U - S^* S \right] \cdot \overline{a} \ge 0 \quad \implies \quad eigenvals \left[S^* \cdot S \right] \le 1 \quad \text{Continuously from DC to infinity!}$

• Must be reciprocal (linear reciprocal materials used in PCBs)

$$S_{i,j} = S_{j,i} \quad or \ S = S^t$$

Must be causal (have causal step or impulse response or satisfy Kramers-Kronig relations)

$$S_{i,j}(t) = 0, \ t < T_{ij}$$

$$S_{i,j}(t) = \frac{1}{\pi} P_{V_{j}} \frac{1}{\omega - \omega} d\omega, \ S_{i}(\omega) = \frac{1}{\pi} P_{V_{j}} \frac{1}{\omega - \omega} d\omega$$
Continuously from DC to infinity!

Preliminary Quality Metrics (0-100%)

Rotation in cor

mostly clockwise around loca

plex plane is

First introduced at IBIS forum at DesignCon 2010

Passivity Quality Measure:

$$PQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} PW_n\right), 0\right]\% \qquad PW_n = 0 \text{ if } PM_n < 1.00001; \text{ otherwise } PW_n = \frac{PM_n - 1.00001}{0.1}$$
$$PM_n = \sqrt{\max\left[\text{ eigenvals}\left(S^*\left(f_n\right) \cdot S\left(f_n\right)\right)\right]}$$

• Reciprocity Quality Measure: $RQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} RW_n\right), 0\right]\%$ $RW_n = 0 \ if \ RM_n < 10^{-6}; \ otherwise \ RW_n = \frac{RM_n - 10^{-6}}{0.1}$ $RM_n = \frac{1}{N_s} \sum_{i,j} |S_{i,j}(f_n) - S_{j,i}(f_n)|$ • Causality Quality Measure: Minimal ratio of clockwise rotation measure to total rotation

Minimal ratio of clockwise rotation measure to total rotation measure in %

Preliminary Quality Metrics

• Brackets for Passivity, Reciprocity and Causality quality metrics

Metric/Model Icon	🥝 - good	🥝 - acceptable	? - inconclusive	🤤 - bad	
Passivity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]	
Reciprocity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]	
Causality	[100, 80]	(80, 50]	(50, 0]		For numerical models

Color code	Passivity (PQM)	Reciprocity (RQM)	Causality (CQM)
Green – good	[99.9, 100]	[99.9, 100]	[80, 100]
Blue – acceptable	[99, 99.9)	[99, 99.9)	[50, 80)
Yellow – inconclusive	[80, 99)	[80, 99)	[20, 50)
Red - bad	[0, 80)	[0, 80)	[0, 20)

Example of preliminary quality evaluation in Simbeor Touchstone Analyzer

4 Þ × **Touchstone Analyzer** ۵ 🗉 🔁 File name Quality Passivity Reciprocity Causality C:\Repository\Simbeor\CMP-28 Simbeor Kit Rev4\CMP-28 Rev4\Touchstone Files\2ndcal d.. Cal_Thru_3p74ns_p1_p2.s2p 99.8 99.9 Cal_Thru_3p74ns_p3_p4.s2p 99.6 100 99.9 cmp28_mstrp_diff_2inch_J38J37J34J33.s4p 71.4 100 99.8 cmp28_mstrp_diff_6inch_J46J45J42J41.s4p 100 99.8 73.1 cmp28_mstrp_diff_gnd_cutout_J59J60J55J56.s4p 99.8 89.7 100 cmp28_mstrp_diff_xtalk_J57J58J53J54.s4p 100 99.8 55.6 cmp28_mstrp_diff_xtalk_J57J64J53J72.s4p 100 99.9 77.2 cmp28_mstrp_diff_xtalk_J57J71J53J61.s4p 66.2 100 99.9 cmp28_mstrp_diff_xtalk_J57J72J53J64.s4p 100 99.9 67.8 cmp28_mstrp_diff_xtalk_J64J72J58J54.s4p 100 99.9 67.9 cmp28_mstrp_diff_xtalk_J71J58J61J54.s4p 99.9 66.9 cmp28_mstrp_diff_xtalk_J71J72J61J64.s4p 100 997 50 Cmp28_mstrp_diff_xtalk_J72J58J64J54.s4p 636 100 cmp28_strpl_diff_2inch_J39J40J35J36.s4p 100 99.8 77.3 cmp28_strpl_diff_6inch_J47J48J43J44.s4p 78.3 C:\Repository\Simbeor\CMP-28_Simbeor_Kit_Rev4\CMP-28_Rev4\Touchstone_Files\3rdca Cal_Thru_3p74ns_p1_p2_vias.s2p Cal_Thru_3p74ns_p1_p2_vias_rpts2p 99.2 99.9 100 Cal_Thru_3p74ns_p3_p4_vias.s2p 100 99.5 cmp28_mstrp_diff_vias_J49J50J51J52.s4p 100 99.8 878 cmp28_mstrp_via_capacitive_p1J19_p2J20.s2p 99.2 100 94.8 cmp28_mstrp_via_inductive_p1J15_p2J16.s2p 100 99.6 96.6 cmp28_strpl_via_backdrilled_p1J14_p2J13.s2p 100 99.4 88 cmp28_strpl_via_capacitive_p1J18_p2J17.s2p 100 99.7 95.8

S-parameters measured for CMP-28 Channel Modeling Platform by Wild River Technology (from CMP-28 Simbeor Kit)

	Touchstone Analyzer					٩	Þ
	1 2 0						
	File name	Quality	Passivity	Reciprocity	Causality		1
	C:\Repository\Simbeor\CMP-28_Simbeor_Kit_Re	ev4\CMP-	28_Rev4\T	ouchstone_Fi	les\1stcal_si	n	
	cmp28_gnd_voids_p1J74_p2J75.s2p	-	100	99.4	93.1		
	cmp28_graduated_coplanar_p1J70_p2J69.s2p		100	99.5	84.4		
	Cmp28_mstrp_2in_p1J1_p2J2.s2p	2	100	99.7	82.3		
	cmp28_mstrp_8inch_p1J4_p2J3.s2p	-	100	99.8	82.5		
	Cmp28_mstrp_Beatty_25ohm_p1J25_p2J26.s2p	-	100	99.4	98.3		
-	Cmp28_mstrp_multiZ_p1J31_p2J32.s2p	-	100	99.3	98.5		
	cmp28_mstrp_p1J30_p2J29.s2p	-	100	99.8	98.6		
	cmp28_mstrp_resonator_p1J22_p2J22.s2p	-	100	99.7	99.4		
	Cmp28_mstrp_whiskers_p1J68_p2J67.s2p	-	100	99.8	94		
	Cmp28_strpl_2in_50ohm_p1J6_p2J5.s2p	-	100	99.1	82.3		
	Cmp28_strpl_2in_Capacitive_p1J10_p2J09.s2p	-	100	99.5	93.8		
	Cmp28_strpl_2in_Inductive_p1J12_p2J11.s2p	-	100	99.4	84.6		
	Cmp28_strpl_8inch_p1J7_p2J8.s2p	-	100	99.7	74.7		
	Cmp28_strpl_Beatty_25ohm_p1J28_p2J27.s2p		100	99.4	95.5		
	Cmp28_strpl_resonator_p1J23_p2J24.s2p	2	100	99.4	98		
-	cmp28 via pathology p1 I65 p2 I66 c2p	-	100	8 99	975		

Live Demo... Estimate quality Plot S-parameters

Final model quality estimation with the rational approximation

 Accuracy of discrete S-parameters approximation with frequency-continuous macro-model, passive from DC to infinity

$$RMSE = \max_{i,j} \left[\sqrt{\frac{1}{N} \sum_{n=1}^{N} \left| S_{ij}(n) - S_{ij}(\omega_n) \right|^2} \right] \qquad S_{i,j}(i\omega) = \left[d_{ij} + \sum_{n=1}^{N_{ij}} \left(\frac{r_{ij,n}}{i\omega - p_{ij,n}} + \frac{r_{ij,n}^*}{i\omega - p_{ij,n}^*} \right) \right] \cdot e^{-s \cdot T_{ij}} \right]$$

Is used to estimate quality of the original data

$$Q = 100 \cdot \max\left(1 - RMSE, 0\right)\%$$

Model Icon/Quality	Quality Metric	RMSE
🥝 - good	[99, 100]	[0, 0.01]
acceptable	[90, 99)	(0.01, 0.1]
? - inconclusive	[50, 90)	(0.1, 0.5]
🤤 - bad	[0, 50)	> 0.5
🖻 - uncertain	[0,100], not passive or not reciprocal	

Rational model can be used for FD and TD analysis instead of the original data

Example of FINAL quality evaluation in Simbeor **Touchstone Analyzer**

Touchstone Analyzer				S-parameters measured for					
File name	Quality	Passivity	Reciprocity	Causality ^	Modeling Platform by Wi			Nilc	
C:\Repository\Simbeor\CMP-28_Simbeor_Kit_Re C:\Repository\Simbeor\CMP-28_Simbeor_Kit_Re	ev4\CMP- 99.5	28_Rev4\Te 100	ouchstone_F 99.8	iles\2nd	(from CM	P-28	8 Sir	nbeo	r Ki
Cmp28_mstrp_diff_6inch_J46J45J42J41.s4p	99.6	100	99.8	-					
Cmp28_mstrp_diff_gnd_cutout_J59J60J55J56.s4p	99.5	100	99.8	Touchstone Analyz	zer				
cmp28_mstrp_diff_xtalk_J57J58J53J54.s4p	99.5	100	99.8						
Cmp28_mstrp_diff_xtalk_J57J64J53J72.s4p	99.6	100	99.9					1	
Cmp28_mstrp_diff_xtalk_J57J71J53J61.s4p	99.6	100	99.9	File name		Quality	Passivity	Reciprocity	Causali
cmp28_mstrp_diff_xtalk_J57J72J53J64.s4p	99.6	100	99.9	C:\Repository\Sim	beor\CMP-28_Simbeor_Kit_R	ev4\CMP-2	28_Rev4\T	ouchstone_F	iles\1stc.
cmp28_mstrp_diff_xtalk_J64J72J58J54.s4p	99.5	100	99.9	Cmp28_gnd_voids	s_p1J74_p2J75.s2p	99.5	100	99.4	2
cmp28_mstrp_diff_xtalk_J71J58J61J54.s4p	99.5	100	99.9	Cmp28_graduated ©	l_coplanar_p1J70_p2J69.s2p	99.7	100	99.5	-
cmp28_mstrp_diff_xtalk_J71J72J61J64.s4p	99.5	100	99.7	Cmp28_mstrp_2in_	_p1J1_p2J2.s2p	99.5	100	99.7	-
cmp28_mstrp_diff_xtalk_J72J58J64J54.s4p	99.6	100	99.9	Cmp28_mstrp_8ind	ch_p1J4_p2J3.s2p	99.7	100	99.8	
cmp28_strpl_diff_2inch_J39J40J35J36.s4p	99.5	100	99.8	Cmp28_mstrp_Bea	atty_25ohm_p1J25_p2J26.s2p	99.6	100	99.4	-
cmp28_strpl_diff_6inch_J47J48J43J44.s4p	99.3	100	99.9	Cmp28_mstrp_mul	ltiZ_p1J31_p2J32.s2p	99.6	100	99.3	-
C:\Repository\Simbeor\CMP-28 Simbeor Kit Re	v4\CMP-	28 Rev4\T	ouchstone	Cmp28_mstrp_p1J	J30_p2J29.s2p	99.6	100	99.8	-
Cal Thru 3p74ns p1 p2 vias s2p	96.5	100	99.4	Cmp28_mstrp_res	onator_p1J22_p2J22.s2p	99.7	100	99.7	÷
Cal Thru 3p74ns p1 p2 vias rots2p	96.8	100	99.2	Cmp28_mstrp_whi	skers_p1J68_p2J67.s2p	99.5	100	99.8	-
\bigcirc Cal Thru 3p74ns p3 p4 vias s2p	97	100	99.5	Cmp28_strpl_2in_5	50ohm_p1J6_p2J5.s2p	99.6	100	99.1	-
cmp28 mstrp diff vias .149.150.151.152 s4p	98.9	100	99.8	Cmp28_strpl_2in_0	Capacitive_p1J10_p2J09.s2p	99.5	100	99.5	-
Cmp28 mstrp via capacitive p1.119 p2.120 s2p	99.6	100	99.2	Cmp28_strpl_2in_l	nductive_p1J12_p2J11.s2p	99.5	100	99.4	5
Cmp28 mstrp via inductive p1J15 p2J16 s2n	98.3	100	99.6	Cmp28_strpl_8inch	n_p1J7_p2J8.s2p	99.6	100	99.7	-
Cmp28 strpl via backdrilled p1J14 n2J13 s2n	97.7	100	99.4	Cmp28_strpl_Beat	ty_25ohm_p1J28_p2J27.s2p	99.7	100	99.4	-
Cmp28 strpl via capacitive p1J18 p2.117 s2n	93.4	100	99.7	Cmp28_strpl_reso	nator_p1J23_p2J24.s2p	99.6	100	99.4	-
	00.1			Cmp28_via_pathol 🖉	logy_p1J65_p2J66.s2p	99.6	100	99.8	

<

ed for CMP-28 Channel Wild River Technology or Kit)

Causality ^

Live Demo... **Build RCM** Estimate quality Compute TDR

(2) Broadband material models

- The largest part of interconnects are transmission line segments
- Models for transmission lines are usually constructed with a quasi-static or electromagnetic field solvers
 - Strip lines can be effectively analysed with quasi-static field solvers
 - Microstrip or CPW may require analysis with a full-wave solver to account for the high-frequency dispersion
- Accuracy of transmission line models is mostly defined by availability of broadband dielectric and conductor roughness models

PCB/Packaging material models

Common dielectric models: Wideband Debye (aka Djordjevic-Sarkar or Swensson-Dermer):

 $\mathcal{E}(f) = \mathcal{E}_r(\infty) + \frac{\mathcal{E}_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m^2} + if}{10^{m^1} + if}\right]$ Continuous-spectrum model; Requires specification of DK and LT at one frequency point (2 parameters)

Multi-pole Debye: $\varepsilon(f) = \varepsilon(\infty) + \sum_{n=1}^{N} \frac{\Delta \varepsilon_n}{1 + i \frac{f}{fr}}$

Requires specification of value at infinity and poles/residues or DK and LT at multiple frequency points (more than 2 parameters)

Common conductor surface roughness models:

Modified Hammerstad (2 parameters):

$$K_{rh} = 1 + \left(\frac{2}{\pi} \cdot \arctan\left[1.4\left(\frac{\Delta}{\delta}\right)^2\right]\right) \cdot \left(RF - 1\right)$$

Huray snowball (1-ball, 2 parameters):

$$K_{rhu} = 1 + \left(\frac{N \cdot 4\pi \cdot r^2}{A_{hex}}\right) / \left(1 + \frac{\delta}{r} + \frac{\delta^2}{2 \cdot r^2}\right)$$

Parameters for the models are not available and must be identified ٠

Material model identification with GMS-parameters & Simberian

See App Notes #2014_02 and 2014_03 for details on identification with GMSparameters at http://www.simberian.com/AppNotes.php and webinar #2 at http://www.simberian.com/Webinars.php

Applicable to dielectric and conductor roughness models;

Example of material model identification

#DC15

From Isola FR408HR specifications

Dk, Permittivity (Laminate & prepreg as laminated) Tested at 56% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline)	3.69 3.66 3.67 3.66 3.65
Df, Loss Tangent (Laminate & prepreg as laminated) Tested at 56% resin	A. @ 100 MHz (HP4285A) B. @ 1 GHz (HP4291A) C. @ 2 GHz (Bereskin Stripline) D. @ 5 GHz (Bereskin Stripline) E. @ 10 GHz (Bereskin Stripline)	0.0094 0.0117 0.0120 0.0127 0.0125

Use measured S-parameters for 2 strip (10.5 mil wide) and micro-strip (13.5 mil wide) segments (2 and 8 inch long); Confirm with differential segments;

CMP-28 validation board designed by Wild River Technology <u>http://wildrivertech.com/</u>

19

Models identified with strip line

Electromagnetic Soluti

GM - Generalized Modal (reflection-less);

About 35 GHz useful bandwidth from the measured data due to mechanical differences;

GMS parameters computed from S-parameters measured for 2 and 8 inch strip line segments (red and blue lines) and modeled for 6 inch strip line segment (brown and green lines): FR408HR model: Wideband Debye, Dk=3.815 (3.66), LT=0.0117 @ 1 GHz; Conductor roughness model: Modified Hammerstad, SR=0.4 um, RF=2;

Models are usable up to 50 GHz!

Models identified with micro-strip line

GM - Generalized Modal (reflection-less);

About 35 GHz useful bandwidth from the measured data due to mechanical differences;

GMS parameters computed from S-parameters measured for 2 and 8 inch micro-strip line segments (red and blue lines) and modeled for 6 inch micro-strip line segment (brown and green lines): FR408HR model: Wideband Debye, Dk=3.815 (3.66), LT=0.0117 @ 1 GHz (same as for strip); Taiyo solder mask model: Wideband Debye, Dk=3.85 (3.9), LT=0.02 @ 1 GHz; Conductor roughness model: Modified Hammerstad, SR=0.4 um, RF=3.5;

Models are usable up to 50 GHz!

(3) Modeling discontinuities in isolation

- A channel is typically composed with transmission lines of different types and transitions (vias, launches, connectors,...)
- The transitions may be reflective due to physical differences in cross-sections of the connected lines
 - The reflections cause additional losses and resonances and, thus, unwanted signal degradation
- The effect of the transitions can be accounted for with models built with a fullwave 3D analysis
- If such analysis is possible in isolation from the rest of the board up to a target frequency, the structure is called localizable
- Only localizable transitions must be used to design predictable interconnects

See how to check the localization at App Notes #2013_03, 2013_05 at http://www.simberian.com/AppNotes.php

(4) Benchmarking or validation

- How to make sure that simulation works? Build validation boards!
- Controlled board manufacturing is the key for success
 - Fiber type, resin content, copper roughness must be strictly specified or fixed!!!
 - Identify all manufacturing adjustments: stackup, etching compensation,...
- Include a set of structures to identify one material model at a time
 - Solder mask, core and prepreg, resin and glass, roughness, plating,...
- Include a set of structures to identify accuracy for transmission lines and typical discontinuities
 - Use identified material models for all structures on the board consistently
 - No tweaking discrepancies should be investigated
- Use VNA measurements and compare both magnitude and phase (or group delay) of all S-parameters and optionally TDR and eye diagram

See more at: Y. Shlepnev, Sink or swim at 28 Gbps, The PCB Design Magazine, October 2014, p. 12-23.

Validation platforms simplify process

- CMP-28/32 Channel Modeling Platform was developed by Wild River Technology to promote systematic approach to interconnect analysis to measurement validation up to 40/50 GHz or up to 28/32 Gbps
 - Contains 27 micro-strip and strip-line interconnect structures equipped with 2.92 mm (CMP-28) and 2.4 mm (CMP-32) connectors and can be used to validate signal integrity simulators or measurement technique

Complete description of CMP-28/32 platforms with all results is available at http://www.simberian.com/Presentations/CMP-28_Simbeor_Kit_Guide.pdf

Demo of validation with Simbeor

- 1. Measure and ensure quality of S-parameters (done)
- 2. Get all stackup and geometry adjustments from manufacturer or do cross-sectioning (done)
- 3. Identify or confirm material models (done)
- 4. Load board design and do post-layout analysis with or without connectors/launches

Example of validation

8-inch micro-strip line segment with launches and connectors

Trace width is reduced by 1 mil

34:36, Simberian Inc. A:V[1,2]; B:V[1,2];

Example of validation

Both narrow and wider sections widths are reduced by 1 mil

What if simulation does not match measurements? 🎄 Simberian

- Verify quality metrics of the measured S-parameters
 - Discard and re-measure if quality is not acceptable
- Verify localization property of the link path (referencing and topology)
 - Re-design non-localized elements
 - Verify model ports if all elements are localized
- Validate or identify material models
- Control manufacturing or verify geometry (build or use validation boards)
 - Cross-section t-lines and vias, do sensitivity analysis
- Other things to check: model convergence, TDR spectrum, deembedding...

Further resources

- Yuriy Shlepnev, Simberian Inc., <u>www.simberian.com</u> <u>shlepnev@simberian.com</u> Tel: 206-409-2368
- Webinars on decompositional analysis, S-parameters quality and material identification <u>http://www.simberian.com/Webinars.php</u>
- Simberian web site and contacts www.simberian.com
- Demo-videos http://www.simberian.com/ScreenCasts.php
- App notes http://www.simberian.com/AppNotes.php
- Technical papers http://kb.simberian.com/Publications.php
- Presentations http://kb.simberian.com/Presentations.php
- Download Simbeor® from <u>www.simberian.com</u> and try for 15 days

