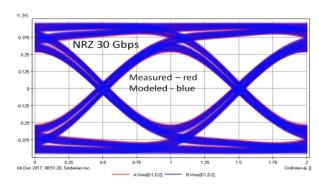


Your Port for EMC+SIPI Compliance

Systematic approach to PCB interconnects analysis to measurement validation

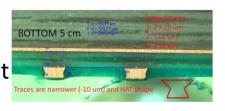
Marko Marin, Infinera Yuriy Shlepnev, Simberian


Outline

- Introduction
- Systematic "sink or swim" validation process
- EvR-1 test board design
- Measurements and GMS-parameters extraction
- Board cross-sectioning
- Material model identification with GMS-parameters
- Validation: Expectations vs. Reality
- Conclusion
- Reality above 30 GHz

How to make predictable interconnects?

Design success "fire triangle"



Accuracy of EDA tools must be systematically validated (most are not)

Pristine VNA measurements from 10 MHz to 40-50 GHz are required - difficult

Material models and manufacturing adjustments must be identified (PCB are not manufactured as designed)

Predictable – analysis correlate with measurement

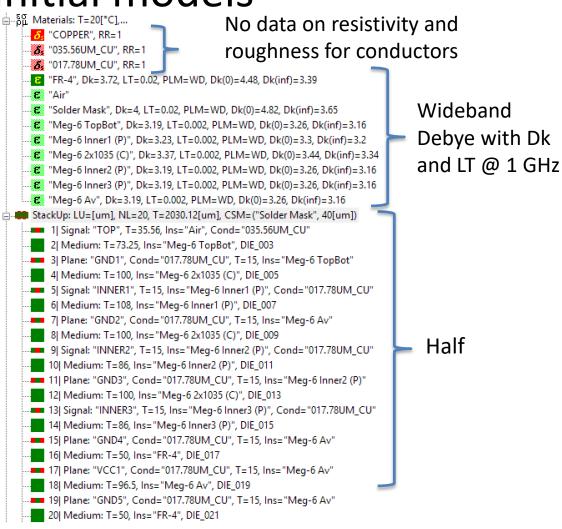
Geometry Adjustments + Material Models + Validated Software = Predictable Interconnects

Systematic validation is the KEY to success...

Systematic "sink or swim" validation process

- 1. Select materials and define PCB stackup with the manufacturer
- 2. Design test structures with the EM analysis (simple links, launches, vias,...)
- 3. Manufacture the board, mount connectors (if any)
- 4. Measure S-parameters and validate quality of the measurements
- 5. Cross-section the board and identify the manufacturing adjustments (if any)
- 6. Identify broad-band dielectric and conductor roughness models with GMSparameters or SPP Light techniques
- 7. Simulate all structures with the identified or validated material models and confirmed adjustments consistently and compare S-parameters and TDR with the measurements (no further manipulations with the data)

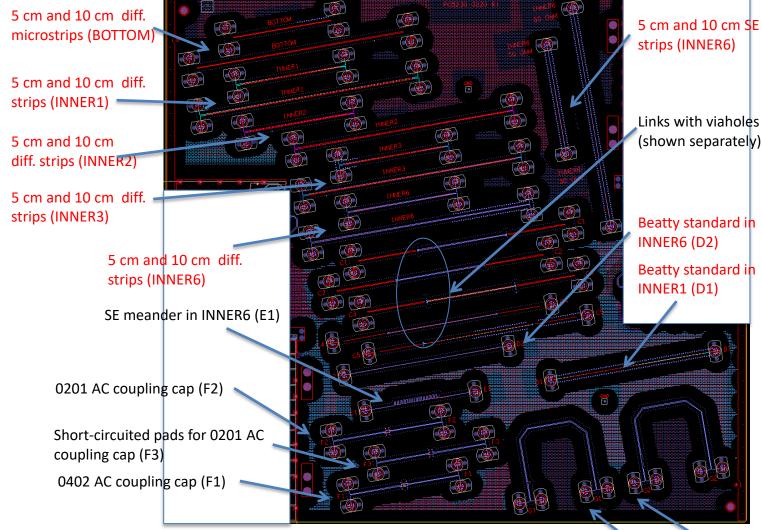

This presentation is a brief report of lessons learned from such validation...



EvR-1 Validation Board

"Trust but Validate"

July 30 - August 3, 2018 Long Beach, CA Stackup design and initial models


HVLP copper - nothing for roughness modeling

EMC+

This is the best we can do - we will see how accurate it is...

Validation board design

Material identification structures - red

Designed trace dimensions:

BOTTOM: 120-250-120 [um] INNER1/6: 110-250-110 [um] INNER2/3: 100-250-100 [um] INNER6 SE: 110 [um] BEATTY INNER1 and INNER6: 110 um 2.5 cm, 330 um 2.5 cm

Dimensions from manufacturer:

BOTTOM: 112-258-112 [um] INNER1/6: 107-250-107 [um] INNER2/3: 99-245-99 [um] INNER6 SE: 109 [um] BOTTOM SE: 127 [um]

Post-layout observations

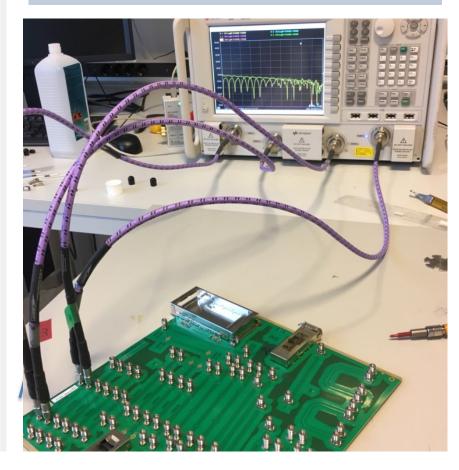
- The PCB is manufactured with the "impedance control" process all trace width and spacing are adjusted by the PCB manufacturer (must be accounted in the analysis)
- No information on trace shape (etching)
- No reliable information on solder mask shape/parameters
- No information on conductor roughness model
- No information on actual backdrilling
- All this makes analysis inaccurate and practically useless for the target bandwidth

Measurements and GMS-parameters extraction

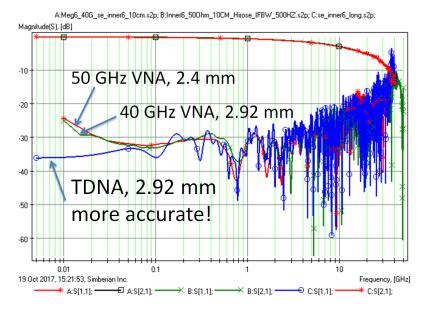
"If measurements do not confirm the model, too bad for the measurements"...

Making pristine measurements from 10 MHz up to 40 GHz is very challenging

- TDNA, 2.92 mm connectors (not acceptable for material identification)
- 27 GHz VNA, 2.92 mm connectors (failure)
- 40 GHz VNA, 2.92 mm connectors (low frequency problem, acceptable)
- 50 GHz VNA, 2.4 mm connectors (low frequency problem, acceptable)
- A few VNA from different vendors evaluated may be suitable for a separate report...

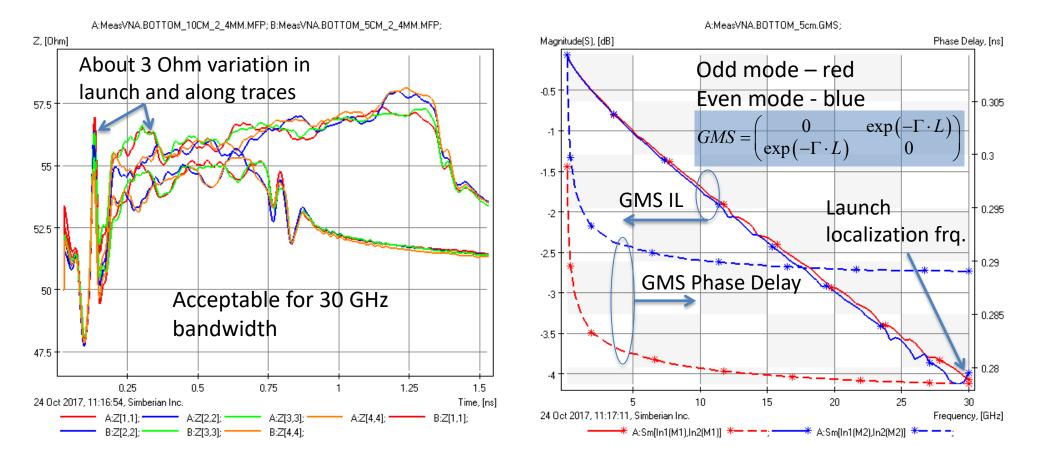


Measurements with 50 GHz VNA

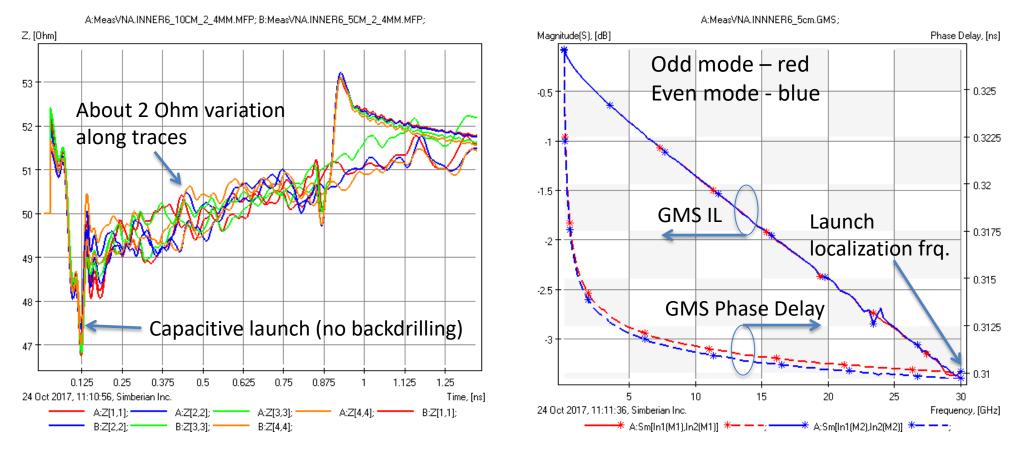

Έ.		C		
----	--	---	--	--

File name	Quality	Passivity	Reciprocit	ty Ci	
C:\Repository\Simbeor\Support\Infinera\March31_2017_board_and_measurement					
BOTTOM_10CM_2_4MM.s4p	99	100	99.6	-	
BOTTOM_5CM_2_4MM.s4p	99.1	100	99.5	-	
C1_2_4MM.s4p	99.2	100	99.7	-	
C2_2_4MM.s4p	99.3	100	99.7	-	
C3_2_4MM.s4p	99.2	100	99.6	-	
C4_VIA_HIROSE_IFBW_500HZ.s2p	99.7	100	99.9	-	
C5_VIA_HIROSE_IFBW_500HZ.s2p	99.7	100	99.8	-	
O1_BEATTY_250HM_INNER1.s2p	99.6	100	99.7	-	
O2_BEATTY_250HM_INNER6.s2p	99.7	100	99.6	-	
C E1_Meander_10cm_Hirose_con_IFBW_500H	99	100	99.8	-	
F1_2_4MM.s4p	99.3	100	99.6	-	
F2_2_4MM.s4p	99.3	100	99.7	-	
F3_2_4MM.s4p	99.2	100	99.5	-	
✓G1_2_4MM.s4p	91	100	99.6	-	
✓ G2_2_4MM.s4p	97.5	100	99.6	-	
VINNER1_10CM_2_4MM.s4p	96.6	100	99.8	-	
INNER1_5CM_2_4MM.s4p	99.1	100	99.8	-	
VINNER2_10CM_2_4MM.s4p	93.6	100	99.8	-	
INNER2_5CM_2_4MM.s4p	99.2	100	99.8	-	
INNER3_10CM_2_4MM.s4p	91.2	100	99.8	-	
INNER3_5CM_2_4MM.s4p	99.2	100	99.8	-	
VINNER6_10CM_2_4MM.s4p	97.7	100	99.8	-	
Inner6_10cm_SE_Amp_con_IFBW_500Hz.s2p	99.5	100	99.9	-	
Inner6_10cm_SE_Hirose_con_IFBW_1kHz.s2p	99.4	100	97	-	
Inner6_500hm_10CM_Hirose_IFBW_500HZ.s	99.6	100	99.7	-	
Inner6_500hm_5CM_Hirose_IFBW_500HZ.s2p	99.5	100	99.8	-	
VINNER6_5CM_2_4MM.s4p	98.8	100	99.7	-	

GOOD QUALITY, SMALL NOISE, MINOR RECIPROCITY VIOLATIONS


Problems at low frequencies – wrong DC convergence, passivity violation (ECAL kit)

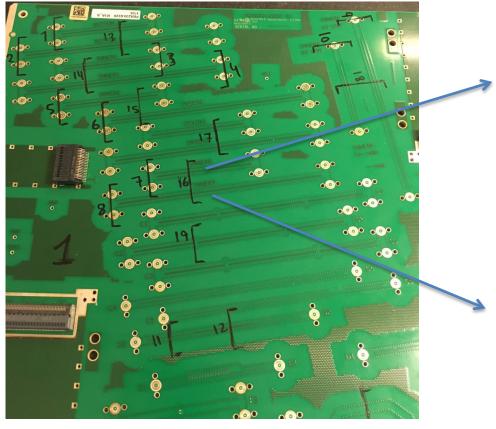
Problem solved with separate measurements with mechanical calibration (for resistivity identification) and cutting S-parameters below 70 MHz and rational fitting

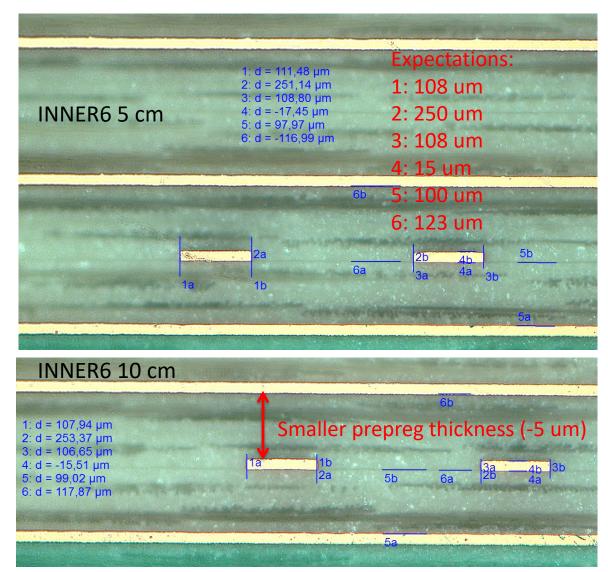

TDR and GMS-parameters: BOTTOM

Difference in phase delay (cause FEXT) is expected...

TDR and GMS-parameters: INNER6

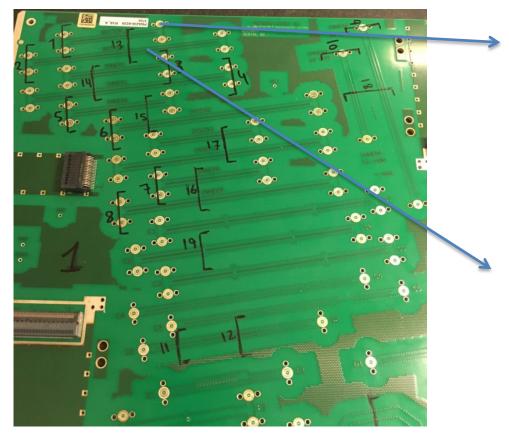
Difference in phase delay (cause FEXT) indicated dielectric inhomogeneity...

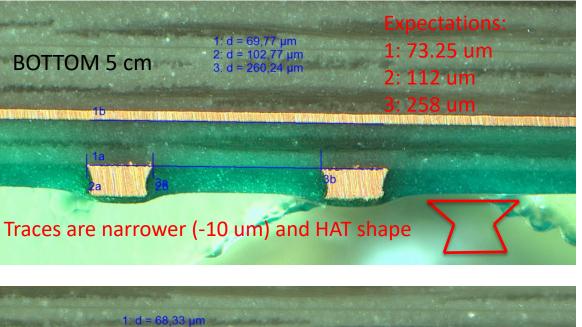

Reality: What is in the board?


"What is done by night appears by day"...

INNER6

Difference in prepreg thickness Close shape and geometry





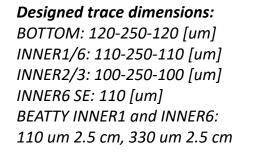
2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL AND POWER INTEGRITY

BOTTOM

Difference in prepreg thickness as well as in thace width, shape and solder mask parameters!

1: d = 68,33 µm 2: d = 100,18 µm 3: d = 264,36 µm 10 Smaller prepreg thickness (-3 um) 24 BOTTOM 10 cm Solder mask is very thick outside of strip!

Difference in prepreg thickness as well as in thace width, shape and solder mask parameters!



1: d = 437 µm

2: d = 311 µm 3: d = 290 µm

Final trace geometry adjustments

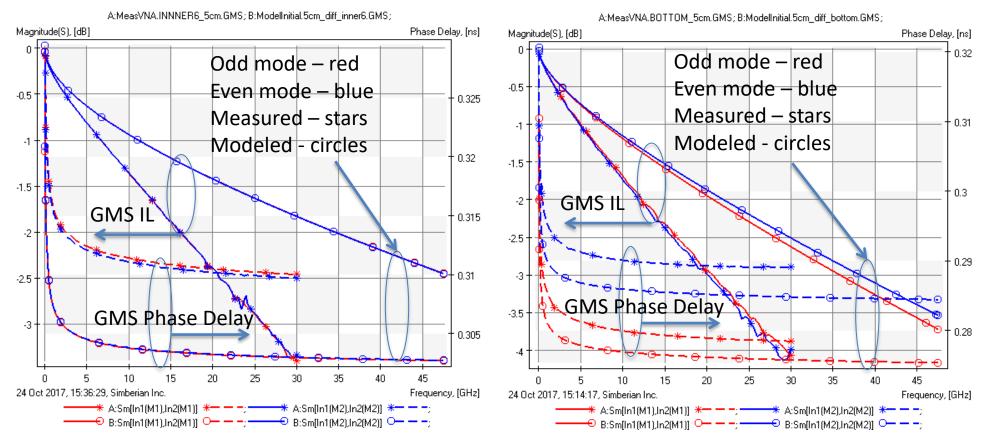
Dimensions from manufacturer: BOTTOM: 112-258-112 [um] INNER1/6: 107-250-107 [um] INNER2/3: 99-245-99 [um] INNER6 SE: 109 [um]

Dimensions after cross-sectioning: BOTTOM: HAT(89/97)-260-HAT(89/97) [um] INNER1/6: 107-255-107 [um] INNER2/3: 96-254-96 [um]

INNER6 SE: 109 [um] BEATTY INNER 6: 109 um 2.5 cm + 326 um 2.5 cm

Thickness of prepreg layers is reduced by 3-5 um – it is almost the same thickness as for the core (it should be) Microstrip layer metal thickness is 48 um instead of 35 um Solder mask layer – 10 um over strips and 38 um between the strips! These ones are very critical! Parameters for strip layers are closer to expectations

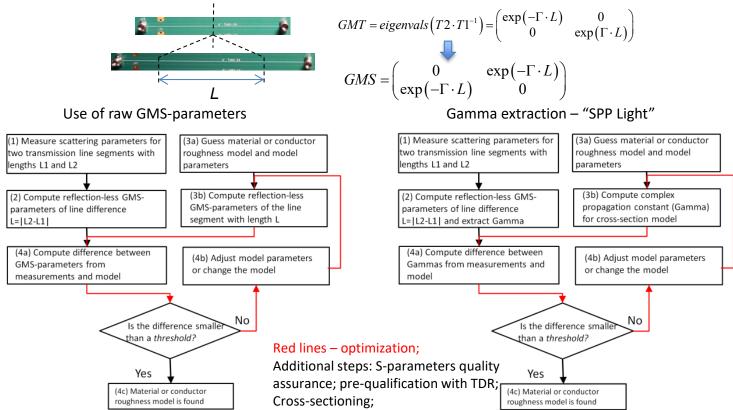
Material Model Identification


Done with GMS-parameters in Simbeor

Measured GMS vs. model with the spreadsheet data

INNER6

Model phase delay and loss are much smaller, no visible difference between the strip modes...


Material model identification

Using measured and simulated GMSparameters:

- a) Identify copper resistivity by matching GMS IL at lowest frequencies
- b) Identify dielectric Dk by matching GMS phase delay (GMS PD)
- c) Identify LT by matching GMS IL at lower frequencies Re-adjust Dk to match GMS PD
- d) Identify roughness model parameters by matching GMS IL at high frequencies

Re-adjust Dk to match GMS PD

e) Do it for all unique dielectrics

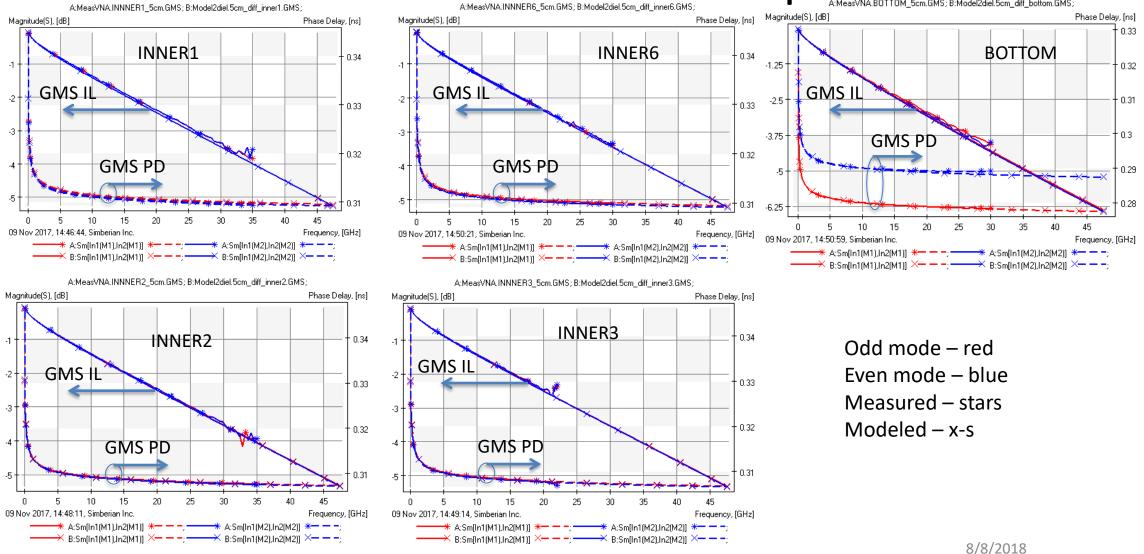
Y. Shlepnev, Broadband material model identification with GMS-parameters, EPEPS 2015. Y. Shlepnev, Y. Choi, C. Cheng, Y. Damgaci, Drawbacks and Possible Improvements of Short Pulse Propagation Technique, EPEPS 2016.

July 30 - August 3, 2018 Long Beach, CA Identification results (best case)

🖶 - ລິດ Materials: T=20[°C],... 5. "COPPER", RR=1 "035.56UM_CU", RR=1, HurayBracken: SR1=0.203074 [um], RF1=4.33943; "017.78UM_CU", RR=1.2, HurayBracken: SR1=0.098 [um], RF1=12.5; "FR-4", Dk=3.72, LT=0.02, PLM=WD, Dk(0)=4.48, Dk(inf)=3.39 E "Air" Solder Mask", Dk=3.2, LT=0.02, PLM=WD, Dk(0)=3.86, Dk(inf)=2.92 "Meg-6 TopBot", Dk=3.4, LT=0.006, PLM=WD, Dk(0)=3.61, Dk(inf)=3.31 NNER1 "Meg-6 Inner1 (P)", Dk=3.17, LT=0.003, PLM=WD, Dk(0)=3.27, Dk(inf)=3.13 "Meg-6 Inner1 (Res)", Dk=3.562, LT=0.003, PLM=WD, Dk(0)=3.67, Dk(inf)=3.51 "Meg-6 2x1035 (C)", Dk=3.37, LT=0.003, PLM=WD, Dk(0)=3.47, Dk(inf)=3.33 "Meg-6 Inner2 (P)", Dk=3.124, LT=0.002, PLM=WD, Dk(0)=3.19, Dk(inf)=3.1 "Meg-6 Inner2 (Res)", Dk=3.425, LT=0.002, PLM=WD, Dk(0)=3.5, Dk(inf)=3.39 NNER2 "Meg-6 Inner3 (P)", Dk=3.09, LT=0.002, PLM=WD, Dk(0)=3.15, Dk(inf)=3.06 "Meg-6 Av", Dk=3.19, LT=0.002, PLM=WD, Dk(0)=3.26, Dk(inf)=3.16 StackUp: LU=[um], NL=20, T=2026.5[um], CSM=("Solder Mask", 58[um]) 1| Signal: "TOP", T=48, Ins="Air", Cond="035.56UM_CU" 2| Medium: T=70, Ins="Meg-6 TopBot", DIE_003 VNER3 3| Plane: "GND1", Cond="017.78UM_CU", T=15, Ins="Meg-6 TopBot" 4| Medium: T=85, Ins="Meg-6 2x1035 (C)", DIE_005 5| Medium: T=15, Ins="Meg-6 Inner1 (Res)", DIE_035 6| Signal: "INNER1", T=15, Ins="Meg-6 Inner1 (Res)", Cond="017.78UM_CU" 7| Medium: T=15, Ins="Meg-6 Inner1 (Res)", DIE_035 iND5 8| Medium: T=88, Ins="Meg-6 Inner1 (P)", DIE_007 9| Plane: "GND2", Cond="017.78UM CU", T=15, Ins="Meg-6 Av" CC2 10| Medium: T=85, Ins="Meg-6 2x1035 (C)", DIE 009 11| Medium: T=15, Ins="Meq-6 Inner2 (Res)", DIE_009 I2| Signal: "INNER2", T=15, Ins="Meg-6 Inner2 (Res)", Cond="017.78UM_CU" 13| Medium: T=15, Ins="Meg-6 Inner2 (Res)", DIE_009 IND6 14| Medium: T=68, Ins="Meg-6 Inner2 (P)", DIE_011 15| Plane: "GND3", Cond="017.78UM_CU", T=15, Ins="Meg-6 Inner2 (P)" 16| Medium: T=85, Ins="Meg-6 2x1035 (C)", DIE_013 NNER4 17| Medium: T=15, Ins="Meg-6 Inner2 (Res)", DIE_009 I8| Signal: "INNER3", T=15, Ins="Meg-6 Inner2 (Res)", Cond="017.78UM_CU" iND7 19| Medium: T=15, Ins="Meg-6 Inner2 (Res)", DIE_009 20| Medium: T=68, Ins="Meg-6 Inner3 (P)", DIE_015 NNER5 21| Plane: "GND4", Cond="017.78UM_CU", T=15, Ins="Meg-6 Av" 22| Medium: T=50, Ins="FR-4", DIE_017 23| Plane: "VCC1", Cond="017.78UM_CU", T=15, Ins="Meg-6 Av" 24| Medium: T=96.5, Ins="Meg-6 Av", DIE_019 25] Plane: "GND5", Cond="017.78UM_CU", T=15, Ins="Meq-6 Av" INNER6 26| Medium: T=50, Ins="FR-4", DIE_021 27| Plane: "VCC2", Cond="017.78UM_CU", T=15, Ins="Meg-6 Av" 28 Medium: T=86, Ins="Meg-6 Av", DIE_023 GND9 29| Plane: "VCC3", Cond="017.78UM_CU", T=15, Ins="Meg-6 Av" 30| Medium: T=100, Ins="Meg-6 2x1035 (C)", DIE_025 31| Plane: "GND6", Cond="017.78UM_CU", T=15, Ins="Meq-6 Inner3 (P)"

Huray-Bracken Roughness Models (causal):
Strips: SR=0.098 um, RF=12.5 Microstrips: SR=0.229 um, RF=3.77

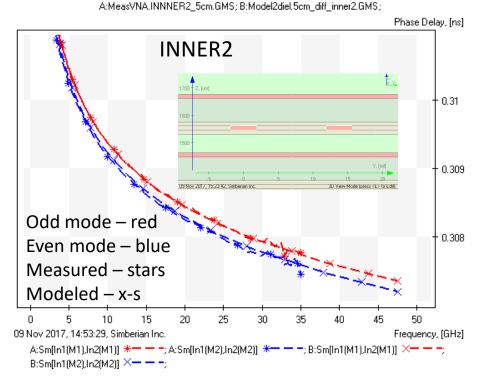
 Wideband Debye models with Dk and LT @ 1 GHz (initial in brackets): CORE (all layers): Dk=3.37 (3.37), LT=0.003 (0.002)
 Prep. INNER1/INNER6: Dk=3.17 (3.23), LT=0.003 (0.002)
 Resin INNER1/INNER6: Dk=3.562, LT=0.003
 Prep. INNER2: Dk=3.124 (3.19), LT=0.002 (0.002)
 Prep. INNER3: Dk=3.09 (3.19), LT=0.002 (0.002)
 Resin INNER2/INNER3: Dk=3.425, LT=0.002
 TOP/BOTTOM: Dk=3.4 (3.19), LT=0.006 (0.002)
 Solder Mask: Dk=3.2 (4.0), LT=0.02

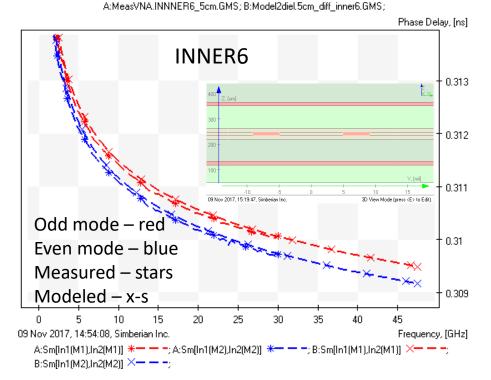

2 roughness models and 8 dielectric models – more difficult to identify, but is necessary for FEXT analysis

Let's see how close are GMS-parameters...

July 30 - August 3, 2018 Long Beach, CA

2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL AND POWER INTEGRITY YOUR PORT FOR EMC+SIPI COMPLIANCE


Measured and modeled GMS-parameters



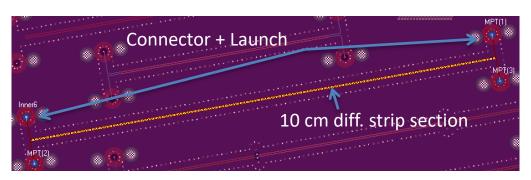
Modal phase delay

Close match for odd and even modes

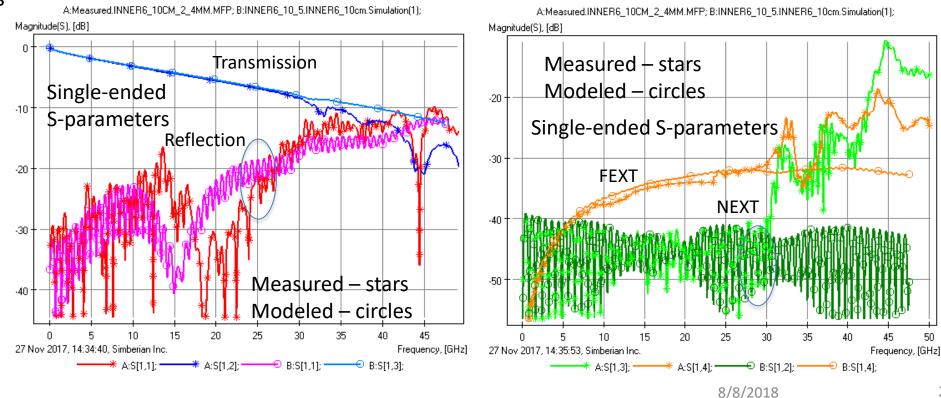
Should give good match in FEXT...

Validation: Expectations vs. Reality

"The Moment of Truth"...



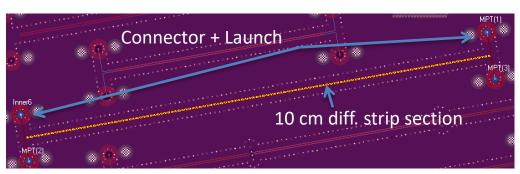
INNER6: 10 cm diff. strip link


Single-ended S-parameters

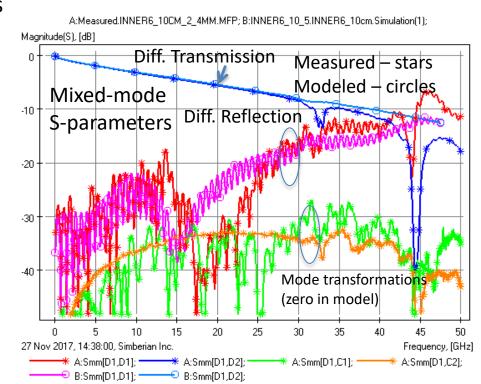
Reality: Large difference above 30 GHz – see reality above 30 GHz...

Acceptable correspondence up to 30 GHz

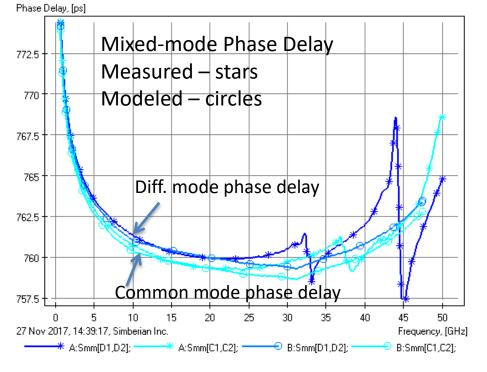
De-compositional EM analysis All trace widths and shapes are adjusted



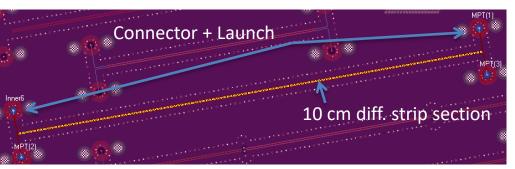
INNER6: 10 cm diff. strip link


Mixed-mode S-parameters

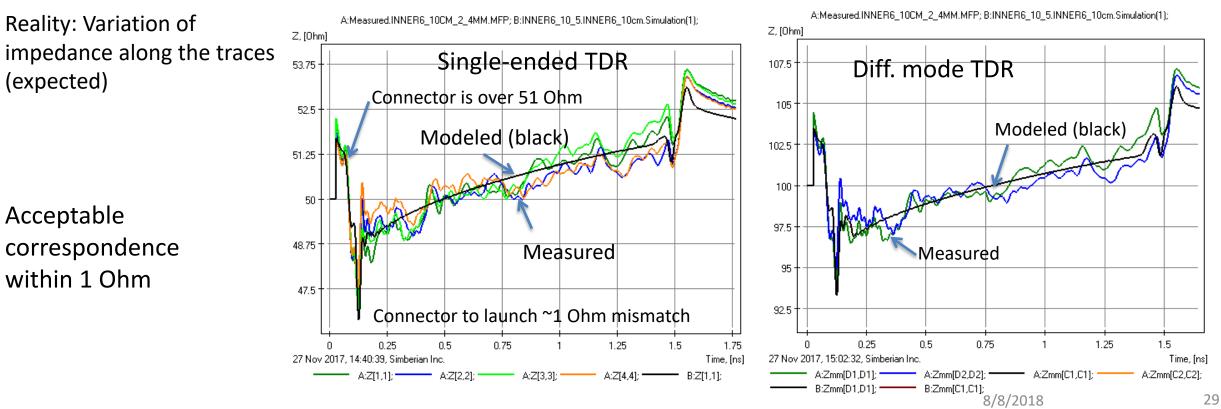
Reality: Difference in reflection between 10 to 30 GHz (now expected due to geometry differences), above 30 GHz – see reality above 30 GHz...


Acceptable correspondence up to 30 GHz

De-compositional EM analysis All trace widths and shapes are adjusted

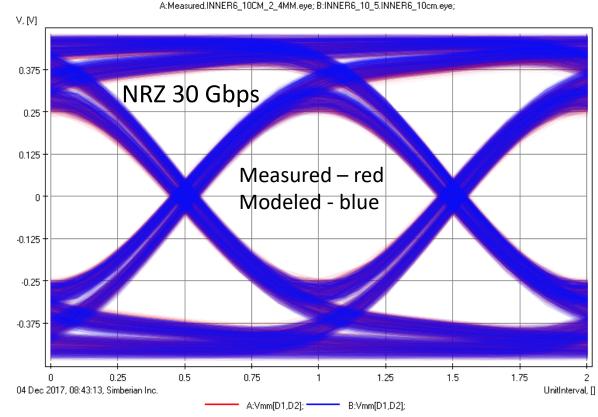


A:Measured.INNER6_10CM_2_4MM.MFP; B:INNER6_10_5.INNER6_10cm.Simulation(1);



INNER6: 10 cm diff. strip link

De-compositional EM analysis All trace widths and shapes are adjusted



INNER6: 10 cm diff. strip link

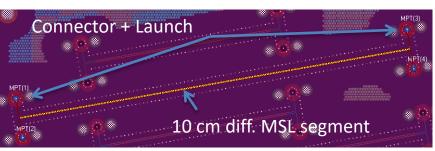
Eye Analyzer

Show Eye Metrics: Selected 🗸 🛛 🔽 Auto-open

Parameter	Measured.INNER6	INNER6_10_5.IN
Eye Level Zero (V)	-0.358943	-0.357034
Eye Level One (V)	0.358254	0.36771
Eye Level Mean (V)	-0.00219978	-0.0024401
Eye Amplitude (V)	0.717197	0.724743
Eye Height (V)	0.47057	0.480019
Eye Width (UI)	0.86031	0.869623
Eye Opening Factor	0.656123	0.66233
Eye Signal to Noise	5.51347	5.56869
Eye Rise Time (20-80) (UI)	0.518454	0.518457
Eye Fall Time (80-20) (UI)	0.517761	0.515182
Eye Jitter (PP) (UI)	0.13969	0.130377
Eye Jitter (RMS) (UI)	0.0318694	0.0320182

~2% difference in eye heights, ~1% in widths; Possible reason – impedance variations, launch mismatch and localization loss...

Π.

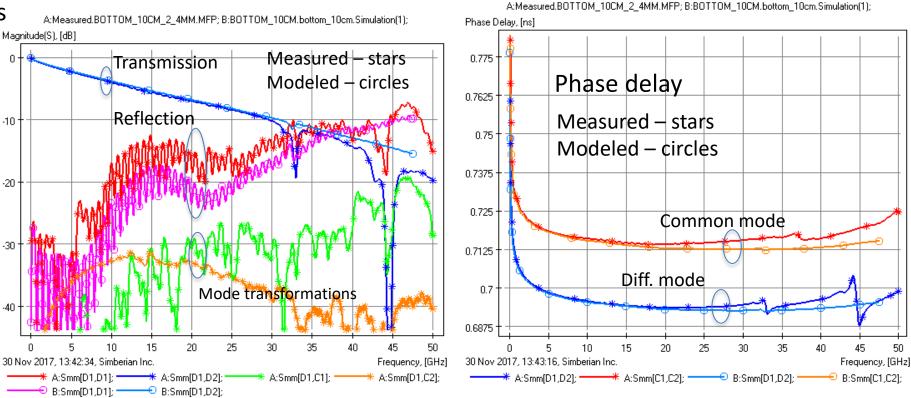

-10

-20

-30

2018 IEEE SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, SIGNAL AND POWER INTEGRITY YOUR PORT FOR EMC+SIPI COMPLIANCE

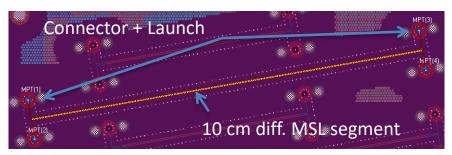
BOTTOM: 10 cm diff. microstrip link



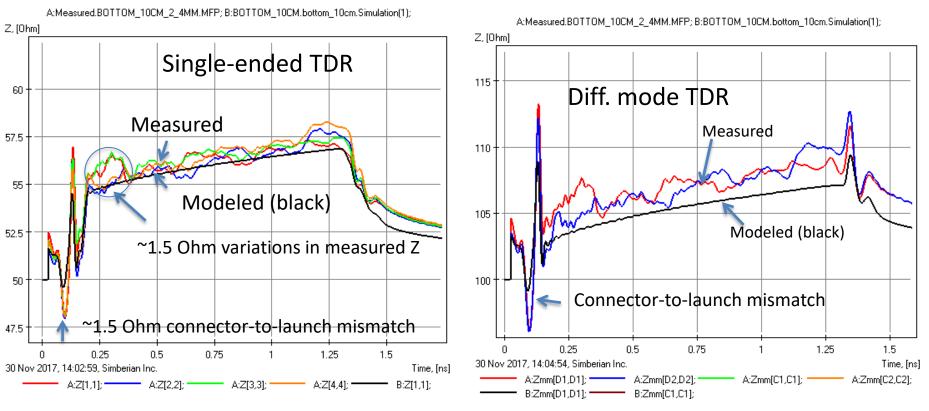
De-compositional EM analysis Shape and size of all MSL sections are adjusted...

Reality: more reflections from 10 to 30 GHz (investigate)...

Mixed-mode S-parameters


Acceptable correspondence up to 30 GHz

8/8/2018


BOTTOM: 10 cm diff. microstrip link

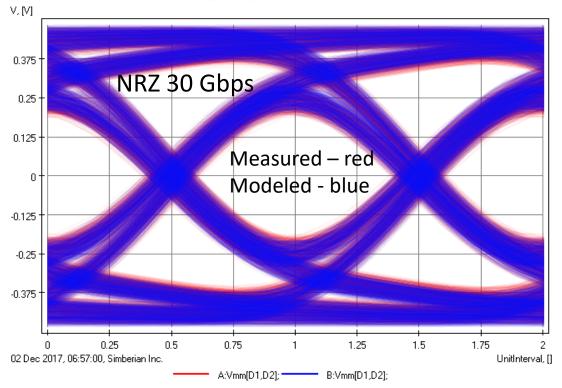
De-compositional EM analysis Shape and size of all MSL sections are adjusted...

Reality: more reflection at the microstrip launch (investigate)... Large variations of impedance along the traces (investigate)...

Acceptable correspondence;

BOTTOM: 10 cm diff. microstrip link

Eye	Ana	yzer	



Show Eye Metrics: Selected 🗸

Auto-open

Parameter	Measured.BOTTO	BOTTOM_10CM
Eye Level Zero (V)	-0.334196	-0.343371
Eye Level One (V)	0.33443	0.339881
Eye Level Mean (V)	-0.000438433	1.49821e-005
Eye Amplitude (V)	0.668627	0.683252
Eye Height (V)	0.368693	0.38681
Eye Width (UI)	0.757871	0.769845
Eye Opening Factor	0.551418	0.56613
Eye Signal to Noise	4.19297	4.34656
Eye Rise Time (20-80) (UI)	0.565492	0.559771
Eye Fall Time (80-20) (UI)	0.565037	0.561818
Eye Jitter (PP) (UI)	0.242129	0.230155
Eye Jitter (RMS) (UI)	0.0494993	0.0478879

A:Measured.BOTTOM_10CM_2_4MM.eye; B:BOTTOM_10CM.bottom_10cm.eye;

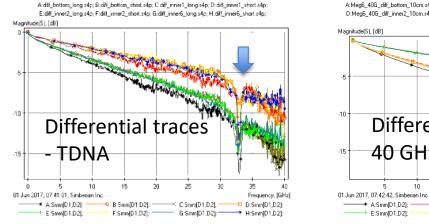
~6% difference in eye heights, 1.5% in widths; Possible reason – large impedance variations, launch mismatch and localization loss...

Example of the validation report

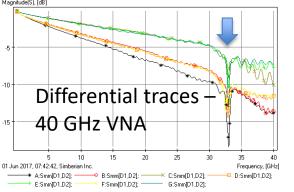
Structure	IL [GHz] SE & MM	RL [GHz] SE & MM	FEXT & NEXT [GHz]	TDR (Ω) ~ SE / MM	Eye (30 Gbps, diff.)	Notes
INNER1 5cm 10cm	25 25	15 15	30	1 / 2 1 / 2	1% EH & EW	There is uncertainty in the epoxy filling after the backdrilling, the launches is more inductive then predicted. DM/CM phase delay correlate up to 25GHz.
INNER2 5cm 10cm	30 30	25 25	30	1 / 2 1 / 2	1% EH & EW	Trace width seems to be 95um instead of 99um. Launch more inductive then predicted, PCB trace width variation. DM/CM phase delay correlate up 30 GHz.
INNER3 5cm 10cm	30 30	30 30	30	1 / 2 1 / 2	3.6% EH, 1% EW	Core/prepreg dielectric models – layered anisotropy. Resonance frequency little lower than predicted. Launches have long stubs (not backdrilled).
INNER6 5cm 10cm	30 30	10-15 10-15	30 30	1 / 3 2 / 4	2% EH, 1% EW	Differences in RL expected due to geometry differences Mode conversions in measurements up to -30dB DM/CM phase delay correlation ~ 30GHz Impedance variations, launch mismatch, loss of localization.
D2 Beatty INNER6	30	30	N/A	1 / N/A	N/A	Loss and dispersion models work for much wider strips! Good correspondence in phase delay and TDR.
BOTTOM 5cm 10cm	30 30	10-15 10-15	30 30	2 / 4 2.5 / 5	6% EH, 1.5% EW	more reflections from 10 to 30 GHz (investigate) Large variations of impedance along the traces (investigate)
G2 Skew INNER6	30	30	30	~3/3	2% EH, 1% EW	Reality: Large difference in mode transformation – investigate what causes it One trace is 1mm longer then the other in layout.
C1 Diff via INNER6 (with stubs)	15 & 30	15 & 30	15		Large difference in EW and EH	Reality: Differences in reflection and in transmission above 10-15 GHz (loss of localization or geometry?) Large difference in eye width and height Reality: much larger ISI due to differences in stub behavior and launch with small anti-pads (sensitive to manufacturing variations)
C2 Diff via INNER6 (backdr.)	30	15	25	1 / 2	5% EH, 1% EW	Reality: differences in diff. reflection from 10 to 25 GHz and in transmission above 30 GHz. Mode conversions in measurement up to -30dB.

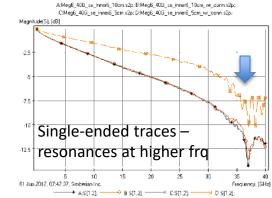
Conclusion: Making predictable interconnects

- Systematic approach with two steps:
 - **1.** Geometry adjustments identification
 - 2. Material model identification (dielectric and conductor roughness)
- And one condition: Use of software validated for PCB or packaging interconnects
- Test boards and "sink or swim" validation process should be used to identify problems
- Accurate prediction of PCB behavior up to 40 GHz with typical trace width and low-cost manufacturing
 process is very ambitious goal due to the SI problem bandwidth and equal importance of low and high
 frequencies
 - In this project interconnects were predictable only up to 30 GHz due to launch localization and manufacturing tolerances
 - Try before you invest into any measurement equipment no matter how reputable is the vendor (applicable to EDA tools)
 - Cross-sectioning revealed that manufacturer adjustments for strip lines are very close, but for microstrips are not acceptable
 - Conductor roughness is the major contributor to the signal degradation analysis without proper conductor roughness model would be useless, use of causal Huray-Bracken roughness model is critical to have good correlation
 - Identified dielectric parameters are very close to the PCB vendor specs (inhomogeneity matter for FEXT)

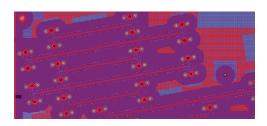


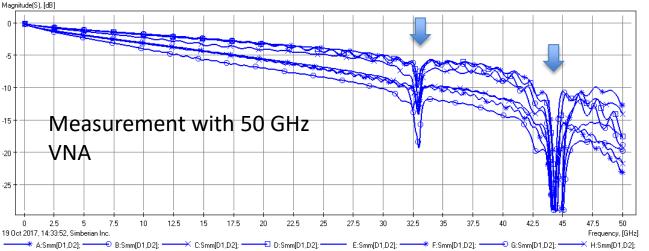
Reality above 30 GHz


"So many blissful revelations The spirit of enlightment hides!"...



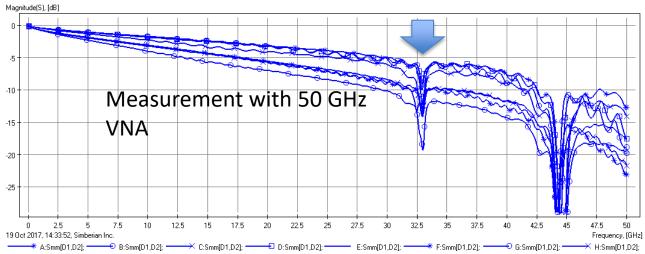
Reality: What caused the resonances?

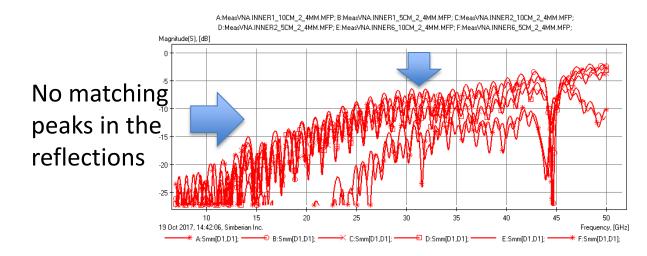

A:Meg6_40G_diff_bottom_10cm.s4p; B:Meg6_40G_diff_inner1_10cm.s4p; C:Meg6_40G_diff_inner1_5cm.s4p; D:Meg6_40G_diff_inner2_10cm.s4p; E:Meg6_40G_diff_inner2_5cm.s4p; E:Meg6_40G_diff_inner6_10cm.s4p; G:Meg6_40G_diff_inner5_scm.s4p;

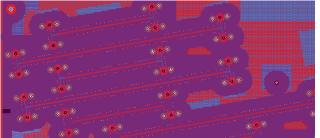


A:MeasVNA.INNER1_10CM_2_4MM.MFP; B:MeasVNA.INNER1_5CM_2_4MM.MFP; C:MeasVNA.INNER2_10CM_2_4MM.MFP; D:MeasVNA.INNER2_5CM_2_4MM.MFP; E:MeasVNA.INNER6_5CM_2_4MM.MFP; G:MeasVNA.BOTTOM_10CM_2_4MM.MFP; H:MeasVNA.BOTTOM_5CM_2_4MM.MFP; D:MeasVNA.INNER6_5CM_2_4MM.MFP; D:MEasVNA.INNER6_5CM_2_5CM_2_5CM_3_

5 and 10 cm diff. traces in INNER1, INNER2, INNER6 and BOTTOM



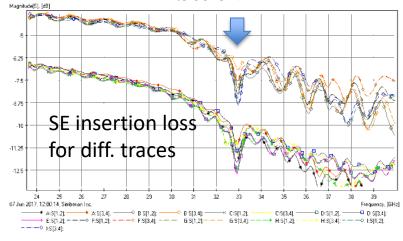

- What caused it?
- 1. Fiber Weave Effect?
- 2. Connectors or adapters?
- 3. Launch localization?
- 4. Non of the above?


Reality: Resonance investigation

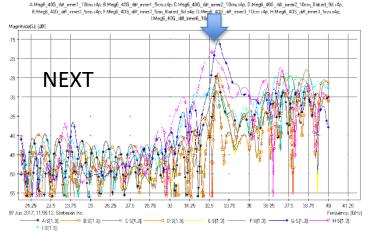
A:MeasVNA.INNER1_10CM_2_4MM.MFP; B:MeasVNA.INNER1_5CM_2_4MM.MFP; C:MeasVNA.INNER2_10CM_2_4MM.MFP; D:MeasVNA.INNER2_5CM_2_4MM.MFP; E:MeasVNA.INNER6_10CM_2_4MM.MFP F:MeasVNA.INNER6_5CM_2_4MM.MFP; G:MeasVNA.BOTTOM_10CM_2_4MM.MFP; H:MeasVNA.BOTTOM_5CM_2_4MM.MFP;

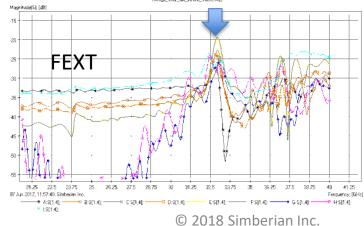
5 and 10 cm diff. traces in INNER1, INNER2, INNER6 and BOTTOM

Looks like NOT a fiber weave effect...

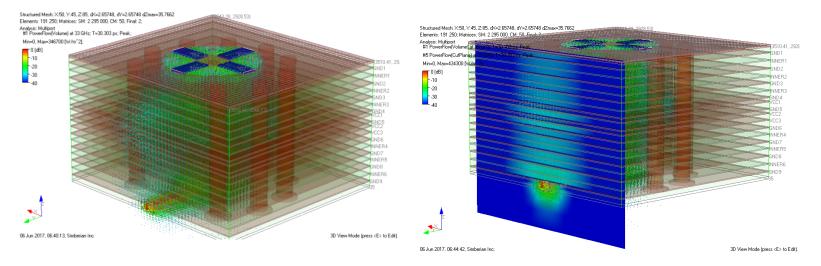


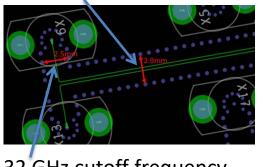
Reality: Resonance investigation


5 and 10 cm diff. traces in INNER1, INNER2, INNER6 and BOTTOM


A Megič, 405_dit immit, 10cm.ukp, BHegić, 405_dit immit, 5cm.skp, C.Megić, 405_dit immit, 10cm.ukp, D.Megić, 405_dit immit, 20cm. Bakad, 93.skp, E.Megić, 406_dit immit, 7cm.ukp, BHegić, 406_dit, immit, 5cm.skp, 6.Megić, 400_dit, immit, 5cm.skp, 8.Megić, 406_dit, immit, 5cm.skp, IMegić, 406_dit, immit, 7cm.ukp, 8.Megić, 406_dit, immit, 5cm.skp, 6.Megić, 400_dit, immit, 5cm.skp, 8.Megić, 406_dit, 5cm.skp, 8.Megić, 406_dit,

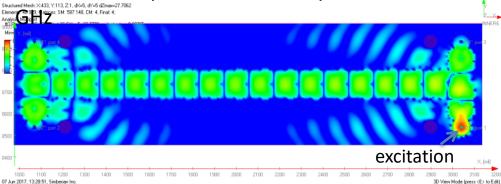
That is where the energy goes!


A Mag6 405_dtl_rrei1_10cm.4q; BMag6 405_dtl_rrei1_5cm.s4p; CMag6 405_dtl_nrei2_10cm.s4p; DMag6 406_dtl_nrei2_10cm.Baked 3d:s4p; EMag6 405_dtl_rrei2_5cm.s4p; FMag6 405_dtl_rrei2_5cm.84ed; 3d:s4p; SMag6, 405_dtl_rrei3_10cm.4p; FMag6 405_dtl_rrei3_5cm.s4p; EMag6 405_dtl_rrei2_5cm.s4p; FMag6_405_dtl_rrei2_5cm.84ed; 3d:s4p; SMag6, 405_dtl_rrei3_10cm.4p; FMag6 405_dtl_rrei3_5cm.s4p;



Launches are leaky above 30 GHz as designed!

Microstrip launch peak power flow density at 33 GHz



29 GHz cutoff frequency

32 GHz cutoff frequency

Instantaneous power flow density at 35

Energy leaked from the launches goes into Substrate Integrated Waveguide (SIW)

Simulated with Simbeor