## S-Parameter Quality Metrics

## Yuriy Shlepnev

Simberian Inc.
wWw.simberian.com


ANRITSU Signal Integrity Symposium, Santa Clara and Newport Beach, CA, July 2014

## Outline

- Introduction
- S-parameters in frequency and time domains
- Constrains on S-parameters
- Quality metrics for reciprocity, passivity, causality
- Rational approximation and final quality metric
- Simbeor Touchstone Analyzer
- Conclusion
- Contacts and resources


## Introduction

- S-parameter models are becoming ubiquitous in design of multi-gigabit interconnects
- Connectors, cables, PCBs, packages, backplanes, ... ,any LTI-system in general can be characterized with S-parameters from DC to daylight
- Electromagnetic or circuit analysis or measurements with VNA or TDNA are used to build S-parameter models mostly in Touchstone form (discrete, band-limited)
- Very often such models have quality issues:
- Passivity and causality violations
- Reciprocity violations
- Common sense violations
- And produce different time-domain and even frequency-domain responses in different solvers!
- This session covers some basics of S-parameter model quality evaluation and improvement for interconnect analysis


## Multiport S-parameters Definition



Scattering matrix definition (Frequency Domain):

$$
\bar{b}=S \cdot \bar{a}, \quad S \in C^{N \times N}, \quad S_{i, j}=\left.\frac{b_{i}}{a_{j}}\right|_{a_{k}=0 k \neq j}
$$

Reflected wave at port i with unit incident wave at port j defines scattering parameter $\mathrm{S}[\mathrm{i}, \mathrm{j}]$

Reduces a system description to a simple input-output relationship irrespective of internal structure!


More in D.M. Pozar, Microwave engineering, John Wiley \& Sons, 1998.

## System Response Computation Requires FrequencyContinuous S-parameters from DC to Infinity

Frequency domain is preferable for analysis of interconnects

$$
S(i \omega)=\int_{-\infty}^{\infty} S(t) \cdot e^{-i \omega t} \cdot d t, \quad S(i \omega) \in C^{N \times N}
$$



Time domain analysis may be also needed!

$$
S(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(i \omega) \cdot e^{i \omega t} \cdot d \omega, S(t) \in R^{N \times N}
$$

## Possible Approximations for Discrete Models

- Discrete Fourier Transform (DFT) and convolution
- Slow and may require interpolation and extrapolation of tabulated Sparameters (uncontrollable error)
- See more on typical problems with DFT in
P. Pupalaikis, "The Relationship Between Discrete-Frequency S-Parameters and Continuous-Frequency Responses", DesignCon, Santa Clara CA, 2012
- Approximate discrete S-parameters with frequency-continuous rational functions (controllable error)
- Accuracy control over defined frequency band (RMS error)
- Causal functions (with passivity enforcement) defined from DC to infinity with analytical impulse response
- Fast recursive convolution algorithm to compute TD response
- Results consistent in time and frequency domains
- Not all Touchstone models are suitable for either approach

What are the constrains on S-parameters?

## Realness Constrain on Time-Domain Response

- Time-domain impulse response matrix must be real function of time

$$
S(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(i \omega) \cdot e^{i \omega t} \cdot d \omega, \quad S(t) \in R^{N \times N}
$$

- It is true if $S(i \omega)=S_{r}(\omega)+i \cdot S_{i}(\omega)$ and

- Those conditions are satisfied by default because of we do not use negative frequencies in Touchstone models
- Conditions at zero frequency are useful to restore the DC point:

$$
\left.\frac{d S_{r}(\omega)}{d \omega}\right|_{\omega=0}=0, S_{i}(0)=0 \quad \begin{aligned}
& \text { DC condition for all } \\
& \text { multiport parameters }
\end{aligned}
$$

## Causality of LTI System (TD \& FD)

- The system is causal if and only if all elements of the time-domain impulse response matrix are $S_{i, j}(t)=0$ at $t<0$ delayed causality (for interconnects):

$$
S_{i, j}(t)=0 \text { at } t<T_{i, j}, T_{i, j}>0
$$



- This lead to Kramers-Kronig relations in frequency-domain

$$
\begin{aligned}
& S(i \omega)=\frac{1}{i \pi} P V \int_{-\infty}^{\infty} \frac{S\left(i \omega^{\prime}\right)}{\omega-\omega^{\prime}} \cdot d \omega^{\prime}, P V=\lim _{\varepsilon \rightarrow 0}\left(\int_{-\infty}^{\omega-\varepsilon}+\int_{\omega^{\prime}}^{+\infty}\right) \\
& S_{r}(\omega)=\frac{1}{\pi} P V \int_{-\infty}^{\infty} \frac{S_{i}\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} \cdot d \omega^{\prime}, \quad S_{i}(\omega)=\frac{-1}{\pi} P V \int_{-\infty}^{\infty} \frac{S_{r}\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} \cdot d \omega^{\prime}
\end{aligned}
$$

Kramers, H.A., Nature, v 117, 1926 p. 775..
Kronig, R. de L., J. Opt. Soc. Am. N12, 1926, p 547.

$$
\begin{aligned}
& \text { derivation } \\
& S(t)=\operatorname{sign}(t) \cdot S(t), \\
& \operatorname{sign}(t)=\left\lvert\, \begin{array}{c}
-1, t<0 \\
1, t>0
\end{array}\right. \\
& S(i \omega)=F\{S(t)\}= \\
& =\frac{1}{2 \pi} F\{\operatorname{sign}(t)\} * F\{S(t)\} \\
& F\{\operatorname{sign}(t)\}=\frac{2}{i \omega}
\end{aligned}
$$

## Causality Estimation - Difficult Way

- Kramers-Kronig relations cannot be directly used to verify causality for the frequency-domain response known over the limited bandwidth at some points
- Causality boundaries can be introduced to estimate causality of the tabulated and band-limited data sets
- Milton, G.W., Eyre, D.J. and Mantese, J.V, Finite Frequency Range Kramers Kronig Relations: Bounds on the Dispersion, Phys. Rev. Lett. 79, 1997, p. 3062-3064
- Triverio, P. Grivet-Talocia S., Robust Causality Characterization via Generalized Dispersion Relations, IEEE Trans. on Adv. Packaging, N 3, 2008, p. 579-593.

Even if test passes - a lot of uncertainties due
to band limitedness and discreteness


Band limitedness of FD response
Multipath propagation
Superluminality: Q. Zhang, et al., Wave-Interference Explanation of Group-Delay Dispersion in Resonators, IEEE Antennas and Propagation Magazine, 2013, v. 55, N2, p. 212-227.

Temporal leakage: A.R. Djordjevic et al., Temporal Leakage in Analysis of Electromagnetic
Systems, IEEE Antennas and Propagation Magazine, v. 54, N6, 2012, p. 92-101.

## "Causality" Estimation - Easy Way

- "Heuristic" causality measure based on the observation that polar plot of a causal system rotates mostly clockwise (suggested by V. Dmitriev-Zdorov)


Causality measure (CM) can be computed as the ratio of clockwise rotation measure to total rotation measure in \%.

If this value is below 80\%, the parameters are reported as suspect for possible violation of causality.

Algorithm is good for numerical models (to find under-sampling), but no so good for measured data due to noise!

## Passivity and Causality in Time-Domain

- A multiport network is passive if energy absorbed by multiport
$E(t)=\int_{-\infty}^{t}\left[\bar{a}^{t}(\tau) \cdot \bar{a}(\tau)-\bar{b}^{t}(\tau) \cdot \bar{b}(\tau)\right] \cdot d \tau \geq 0, \forall t$ (does not generate energy)
for all possible incident waves
- If the system is passive according to the above definition, it is also causal
$\bar{a}(t)=0, \forall t<t_{0} \Rightarrow \int_{-\infty}^{t}\left[\bar{b}^{t}(\tau) \cdot \bar{b}(\tau)\right] \cdot d \tau \leq 0 \Rightarrow \bar{b}(t)=0, \forall t<t_{0}$

- Thus, we need to check only the passivity of interconnect model!

More in: P. Triverio S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, Causality, and Passivity in Electrical Interconnect Models, IEEE Trans. on Advanced Packaging, vol. 30. 2007, N4, p. 795-808.

## Passivity in Frequency Domain

- Power transmitted to multiport is a difference of power transmitted by incident and reflected waves:

$$
P_{i n}=\sum_{n=1}^{N}\left|a_{n}\right|^{2}-\left|b_{n}\right|^{2}=\left[\bar{a}^{*} \cdot \bar{a}-\bar{b}^{*} \cdot \bar{b}\right]
$$

or

$$
P_{\text {in }}=\bar{a}^{*} \cdot \bar{a}-\bar{a}^{*} \cdot S^{*} S \cdot \bar{a}=\bar{a}^{*} \cdot\left[U-S^{*} S\right] \cdot \bar{a}
$$

- Transmitted power is defined by Hermitian quadratic form and must be not negative for passive multiport for any combination of incident waves
- Quadratic form is non-negative if eigenvalues
 of the matrix are non-negative (Golub \& Van Loan):

$$
\text { eigenvals }\left[U-S^{*} \cdot S\right] \geq 0 \Rightarrow \text { eigenvals }\left[S^{*} \cdot S\right] \leq 1 \quad \text { (U is unit matrix) }
$$

Sufficient condition only if verified from DC to infinity (impossible for discrete Touchstone models)

## Reciprocity

- Linear circuits with reciprocal materials are reciprocal according to Lorentz's theorem of reciprocity:
Reflected wave measured at port 2 with incident wave at port 1 is equal to reflected wave measured at port 1 with the same incident wave at port 2


$$
b=S_{1,2} \cdot a \quad \square S_{2,1}=S_{1,2}
$$

- In general it means that the scattering matrices are symmetric

$$
S_{i, j}=S_{j, i} \text { or } S=S^{t} \quad \text { at all frequencies }
$$

More in: L. Sevgi "Reciprocity: Some Remarks from a Field Point of View", IEEE Antennas and Propagation Magazine, Vol. 52, No.2, April 2010

## Good S-parameter Models of Interconnects

- Must be passive (do not generate energy)

$$
P_{i n}=\bar{a}^{*} \cdot\left[U-S^{*} S\right] \cdot \bar{a} \geq 0 \Rightarrow \text { eigenvals }\left[S^{*} \cdot S\right] \leq 1 \text { from DC to infinity! }
$$

- Must be reciprocal (linear reciprocal materials used in PCBs)

$$
S_{i, j}=S_{j, i} \text { or } S=S^{t}
$$

- Must be causal (have causal step or impulse response or satisfy KK relations) $S_{i, j}(t)=0, t<T_{i j}$


$$
S(i \omega)=\frac{1}{i \pi} P V \int_{-\infty}^{\infty} \frac{S\left(i \omega^{\prime}\right)}{\omega-\omega^{\prime}} \cdot d \omega^{\prime}
$$

- Must have sufficient bandwidth matching signal spectrum
- Must be appropriately sampled to resolve all resonances


## Quality Metrics (0-100\%) to Define Goodness

First introduced at IBIS forum at DesignCon 2010

- Passivity Quality Measure:
$P Q M=\max \left[\frac{100}{N_{\text {total }}}\left(N_{\text {total }}-\sum_{n=1}^{N_{\text {Nowl }}} P W_{n}\right), 0\right] \% \quad P W_{n}=0$ if $P M_{n}<1.00001$; otherwise $P W_{n}=\frac{P M_{n}-1.00001}{0.1}$
should be $>99 \% \quad P M_{n}=\sqrt{\max \left[\operatorname{eigenvals}\left(S^{*}\left(f_{n}\right) \cdot S\left(f_{n}\right)\right)\right]}$
- Reciprocity Quality Measure:

$$
\begin{array}{cl}
R Q M=\max \left[\frac{100}{N_{\text {tooil }}}\left(N_{\text {tootl }}-\sum_{n=1}^{N_{\text {mal }}} R W_{n}\right), 0\right] \% & R W_{n}=0 \text { if } R M_{n}<10^{-6} ; \text { otherwise } R W_{n}=\frac{R M_{n}-10^{-6}}{0.1} \\
\text { should be }>99 \% & R M_{n}=\frac{1}{N_{s}} \sum_{i, j}\left|S_{i, j}\left(f_{n}\right)-S_{j, i}\left(f_{n}\right)\right|
\end{array}
$$

- Causality Quality Measure: Minimal ratio of clockwise rotation measure to total rotation measure in $\%$ (should be $>80 \%$ for numerical models)


## Preliminary Quality Estimation Metrics

- Preliminary Touchstone model quality can be estimated with Passivity, Reciprocity and Causality quality metrics (PQM, RQM, CQM)

| Metric/Model Icon | - good | - acceptable | $?$ - inconclusive | - bad |
| :--- | :--- | :--- | :--- | :--- |
| Passivity | $[100,99.9]$ | $(99.9,99]$ | $(99,80]$ | $(80,0]$ |
| Reciprocity | $[100,99.9]$ | $(99.9,99]$ | $(99,80]$ | $(80,0]$ |
| Causality | $[100,80]$ | $(80,50]$ | $(50,0]$ | ---- |


| Color code | Passivity (PQM) | Reciprocity (RQM) | Causality (CQM) |
| :--- | :--- | :--- | :--- |
| Green - good | $[99.9,100]$ | $[99.9,100]$ | $[80,100]$ |
| Blue - acceptable | $[99,99.9)$ | $[99,99.9)$ | $[50,80)$ |
| Yellow - inconclusive | $[80,99)$ | $[80,99)$ | $[20,50)$ |
| Red - bad | $[0,80)$ | $[0,80)$ | $[0,20)$ |

## Example of Preliminary Quality Estimation in Simbeor Touchstone Analyzer ${ }^{\text {тM }}$

Small passivity \& reciprocity violations in most of the models Low causality in some measured data due to noise at high frequencies


## Rational Approximation of S-parameters as Alternative Frequency-Continuous Model

$$
\bar{b}=S \cdot \bar{a}, \quad S_{i, j}=\left.\frac{b_{i}}{a_{j}}\right|_{a_{k}=0} \Rightarrow S_{i, j}(i \omega)=\left[d_{i j}+\sum_{n=1}^{N_{i i}}\left(\frac{r_{i, n}}{i \omega-p_{i, j n}}+\frac{r_{i, n}^{*}}{i \omega-p_{i j, n}^{*}}\right)\right] \cdot e^{-s T_{i j}} \begin{aligned}
& \begin{array}{l}
\text { Continuous functions } \\
\text { of frequency defined } \\
\text { from DC to infinity; }
\end{array}
\end{aligned}
$$

$s=i \omega, d_{i j}-$ values at $\infty, N_{i j}-$ number of poles,
$r_{i, n}-$ residues, $p_{i, n}-$ poles (real or complex), $T_{i j}$ - optional delay
Causal if passivity is ensured!

- Impulse response is analytical, real and delay-causal:

$$
\begin{aligned}
& S_{i, j}(t)=0, t<T_{i j} \\
& S_{i, j}(t)=d_{i j} \delta\left(t-T_{i j}\right)+\sum_{n=1}^{N_{i j}}\left[r_{i j, n} \cdot \exp \left(p_{i j, n} \cdot\left(t-T_{i j}\right)\right)+r_{i j, n}^{*} \cdot \exp \left(p_{i j, n}^{*} \cdot\left(t-T_{i j}\right)\right)\right], t \geq T_{i j}
\end{aligned}
$$

- Stable $\operatorname{Re}\left(p_{i j, n}\right)<0$
- Passive if eigenvals $\left[S(\omega) \cdot S^{*}(\omega)\right] \leq 1 \forall \omega$, from 0 to $\infty$
- Reciprocal if $S_{i, j}(\omega)=S_{j, i}(\omega)$

May require enforcement

## Uses for Rational Approximation

- Compute time-domain response of a channel with a fast recursive convolution algorithm (exact solution for PWL signals)
- Produce broad-band SPICE macro-models
- Smaller model size, stable analysis
- Consistent frequency and time domain analyses in any solver
- Improve quality of tabulated Touchstone models
- Fix minor passivity and causality violations
- Interpolate and extrapolate with guarantied passivity and causality
- Measure the original model quality


## Quality Estimation with Rational Model

- Accuracy of discrete S-parameters approximation with frequencycontinuous macro-model, passive from DC to infinity

$$
\begin{aligned}
& R M S E=\max _{i, j}\left[\sqrt{\frac{1}{N} \sum_{n=1}^{N}\left|S_{i j}(n)-S_{i j}\left(\omega_{n}\right)\right|^{2}}\right] \\
& \quad \text { original tabulated data }
\end{aligned}
$$

- Can be used to estimate quality of the original data

$$
Q=100 \cdot \max (1-R M S E, 0) \%
$$

| Model Icon/Quality | Quality Metric | RMSE |
| :--- | :--- | :--- |
| - good | $[99,100]$ | $[0,0.01]$ |
| $?$ - acceptable | $[90,99)$ | $(0.01,0.1]$ |
| $?$ - inconclusive | $[50,90)$ | $(0.1,0.5]$ |
| $?$ - bad | $[0,50)$ | $>0.5$ |
| $?$ uncertain | $[0,100]$, not passive or not reciprocal |  |

## Example of Quality Estimation with RCM in Simbeor Touchstone Analyzer®

All rational macro-models are passive, reciprocal, causal and have acceptable accuracy (acceptable quality of original models)


## Simbeor Touchstone Analyzer for Model Quality Assurance, Clean-up and Macro-modeling



Simbeor can be used to plot Touchstone models, transform multiport parameters, estimate and improve model quality, and export either cleaned up model or convert it into broad-band SPICE macro-models


Simbeor Touchstone Analyzer ${ }^{T M}$ facilitates and automates all quality assurance and macro-modeling tasks

## Demo: Simbeor Touchstone Analyzer™

- Find all Touchstone models in computer or in the network and estimates passivity, reciprocity and causality
- Plot S-parameters and quality and compliance metrics
- Build macro-model and use it for final quality estimation
- Produce BB SPICE or improved Touchstone models
- Import model into a project for further analysis or use in a linear network


## Conclusion \& Questions

## How to Avoid Problems with S-parameter Models?

- Use reciprocity, passivity and causality metrics for preliminary analysis
- RQM and PQM metrics should be > 99\% (acceptable level)
- CQM should be $>80 \%$ for all numerical models
- Use the rational model accuracy as the final quality measure
- QM should be > 90\% (acceptable level)
- Discard the model with low RQM, PQM and QM metrics!
- The main reason is we do not know what it should be
- Models that pass the quality metrics may still be not usable or mishandled by a system simulator
- Due to band-limitedness, discreteness and brut force model fixing
- Use rational or BB SPICE macro-models instead of Touchstone models for consistent time and frequency domain analyses


## Contact \& Resources

- Yuriy Shlepnev, Simberian Inc.
shlepnev@simberian.com
Tel: 206-409-2368
- Download Simbeor® from www. simberian.com and try Touchstone Analyzer ${ }^{\text {TM }}$ on your models and all other features for 15 days
- To learn more on S-parameters quality see the following presentations (also available at Simberian web site and on request):
- Y. Shlepnev, Quality Metrics for S-parameter Models, DesignCon 2010 IBIS Summit, Santa Clara, February 4, 2010
- H. Barnes, Y. Shlepnev, J. Nadolny, T. Dagostino, S. McMorrow, Quality of High Frequency Measurements: Practical Examples, Theoretical Foundations, and Successful Techniques that Work Past the 40 GHz Realm, DesignCon 2010, Santa Clara, February 1, 2010.
- E. Bogatin, B. Kirk, M. Jenkins, Y. Shlepnev, M. Steinberger, How to Avoid Butchering S-Parameters, DesignCon 2011
- Y. Shlepnev, Reflections on S-parameter quality, DesignCon 2011 IBIS Summit, Santa Clara, February 3, 2011

