

Quality of S-parameter models

Asian IBIS Summit, Yokohama, November 18, 2011

Yuriy Shlepnev shlepnev@simberian.com

💫 Simbeor - [Touchstone Analyzer]								
Touchstone Analyzer								
C Refresh E Tree-view Table-view					A:GBX_Connector_HFSS(1).s4p; B:GBX_Connector_HFSS.s4p;			
File name beattystandard25ohm.S2P Connector_12to12.s48p crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup crosstalkstriptobroadsidecoup	Quality 98.1 96.1 94.7 94.8 94.9 95.3 95.3 96.3 97.5	Passivity 100 82.6 96.4 96.3 96.1 96.1 97.3 99.2	Reciprocity 95.5 95.6 100 99.2 99.2 99.3 99.3 99 99.2 99.5	Causality	Magnitude(S). [dB]			
GBX_Connector_HFSS(1).s4p GBX_Connector_HFSS.s4p GBX_Connector_HFSS.s4p IConect.s2p J104J94-J105J95.s4p J104J94-J97J99.s4p	98.2 91.5 92.6 95.8	99.9 99.5 99.4 99.8 100	100 91 52.6 100 100	97.7 - - - - -	-62.5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 13 Oct 2011, 10:52:35, Simberian Inc. → A:Smm[D1,D1]; → A:Smm[D1,D2]; → A:Smm[D1,C1]; → A:Smm[D1,C2]; → B:Smm[D1,D1]; → B:Smm[D1,D2]; → B:Smm[D1,C1]; → B:Smm[D1,C2]; ▼ B:Smm[D1,D1]; → CA:Smm[D1,D2]; → B:Smm[D1,C1]; → B:Smm[D1,C2]; ▼ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑			

Copyright © 2011 by Simberian Inc. Reuse by written permission only. All rights reserved.

Outline

- Introduction
- S-parameters in frequency and time domains
- Constrains on S-parameters in frequency domain
- Quality metrics for reciprocity, passivity, causality
- Rational approximation and final quality metric
- Conclusion
- Contacts and resources

S-parameter models

- S-parameter models are becoming ubiquitous in design of multi-gigabit interconnects
 - Connectors, cables, PCBs, packages, backplanes, ..., any LTIsystem in general can be characterized with S-parameters from DC to daylight
- Electromagnetic analysis or measurements are used to build S-parameter Touchstone models
- Very often such models have quality issues:
 - Reciprocity violations
 - Passivity and causality violations
 - Common sense violations
- And produce different time-domain and even frequencydomain responses in different solvers!

Multiport S-parameters formal definition

$$\left(\begin{matrix} ..., V_N \\ N \end{matrix} \right)^t \quad \text{-vector of port voltages} \\ - \text{vector of port currents} \end{matrix}$$

$$Z_0 = diag\{Z_{0i}, i = 1, ..., N\} \in C^{N \times N} \quad \text{normalization impedances} \\ \overline{a} = \frac{1}{2} Z_0^{-1/2} \cdot \left(\overline{V} + Z_0 \cdot \overline{I} \right) \quad \text{-vector of incident waves} \\ \overline{b} = \frac{1}{2} Z_0^{-1/2} \cdot \left(\overline{V} - Z_0 \cdot \overline{I} \right) \quad \text{-vector of reflected waves}$$

Scattering matrix definition:

$$\overline{b} = S \cdot \overline{a}, \qquad S \in C^{N \times N}, \qquad S_{i,j} = \frac{b_i}{a_j} \Big|_{a_k = 0 \ k \neq j}$$

Frequency Domain (FD)

Reflected wave at port i with unit incident wave at port j defines scattering parameter S[i,j]

Example of S-parameters definition

S-parameters are available in 2 forms

- Analytical models
 - Circuit with lumped elements (rational models)
 - Distributed circuits (models with delays)
- Tabulated (discrete) Touchstone models
 - SPICE simulators
 - Microwave analysis software
 - Electromagnetic analysis software
 - Measurements (VNA or TDNA)

Common S-parameter model defects

D Model bandwidth deficiency

- S-parameter models are band-limited due to limited capabilities of solvers and measurement equipment
- Model should include DC point or allow extrapolation, and high frequencies defined by the signal spectrum

Model discreteness

- Touchstone models are matrix elements at a set of frequencies
- Interpolation or approximation of tabulated matrix elements may be necessary both for time and frequency domain analyses

Model distortions due to

- Measurement or simulation artifacts
- Passivity violations and local "enforcements"
- Causality violations and "enforcements"
- Human mistakes of model developers and users
- How to rate quality of the models?

System response computation requires frequencycontinuous S-parameters from DC to infinity

Possible approximations for discrete models

- Discrete Fourier Transform (DFT) and convolution
 - Slow and may require interpolation and extrapolation of tabulated S-parameters (uncontrollable error)
- Approximate discrete S-parameters with rational functions (RMS error)
 - Accuracy is under control over the defined frequency band
 - Frequency-continuous causal functions defined from DC to infinity with analytical impulse response
 - Fast recursive convolution algorithm to compute TD response
 - Results consistent in time and frequency domains
- Not all Touchstone models are suitable for either approach

Realness constrain on time-domain response

Time-domain impulse response matrix must be real function of time

$$S(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(i\omega) \cdot e^{i\omega t} \cdot d\omega, \quad S(t) \in \mathbb{R}^{N \times N}$$

■ It is true if $S(i\omega) = S_r(\omega) + i \cdot S_i(\omega)$ and $S_r(-\omega) = S_r(\omega)$ real part is even function of frequency $S_i(-\omega) = -S_i(\omega)$ imaginary part is odd function of frequency

- Those conditions are satisfied by default because of we do not use negative frequencies in Touchstone models
- Conditions at zero frequency are useful to restore the DC point:

$$\frac{dS_r(\omega)}{d\omega}\bigg|_{\omega=0} = 0, \ S_i(0) = 0$$

DC condition for all multiport parameters

Causality of LTI system (TD & FD)

- The system is causal if and only if all elements of the time-domain impulse response matrix are $S_{i,j}(t) = 0$ at t < 0delayed causality (for interconnects): $S_{i,j}(t) = 0$ at $t < T_{i,j}, T_{i,j} > 0$
- This lead to Kramers-Kronig relations in frequency-domain

$$S(i\omega) = \frac{1}{i\pi} PV \int_{-\infty}^{\infty} \frac{S(i\omega')}{\omega - \omega'} \cdot d\omega', \quad PV = \lim_{\varepsilon \to 0} \left(\int_{-\infty}^{\omega - \varepsilon} + \int_{\omega + \varepsilon}^{+\infty} \right)$$
$$S_r(\omega) = \frac{1}{\pi} PV \int_{-\infty}^{\infty} \frac{S_i(\omega')}{\omega - \omega'} \cdot d\omega', \quad S_i(\omega) = \frac{-1}{\pi} PV \int_{-\infty}^{\infty} \frac{S_r(\omega')}{\omega - \omega'} \cdot d\omega'$$

Kramers, H.A., Nature, v 117, 1926 p. 775.. Kronig, R. de L., J. Opt. Soc. Am. N12, 1926, p 547.

derivation

$$S(t) = sign(t) \cdot S(t),$$

$$sign(t) = \begin{vmatrix} -1, t < 0 \\ 1, t > 0 \end{vmatrix}$$

$$S(i\omega) = F\{S(t)\} =$$

$$= \frac{1}{2\pi} F\{sign(t)\} * F\{S(t)\}$$

$$F\{sign(t)\} = \frac{2}{i\omega}$$

© 2011 Simberian Inc.

Causality estimation - difficult way

- Kramers-Kronig relations cannot be directly used to verify causality for the frequency-domain response known over the limited bandwidth at some points
- Causality boundaries can be introduced to estimate causality of the tabulated and band-limited data sets
 - Milton, G.W., Eyre, D.J. and Mantese, J.V, *Finite Frequency Range Kramers Kronig Relations: Bounds on the Dispersion,* Phys. Rev. Lett. 79, 1997, p. 3062-3064
 - Triverio, P. Grivet-Talocia S., Robust Causality Characterization via Generalized Dispersion Relations, IEEE Trans. on Adv. Packaging, N 3, 2008, p. 579-593.

Even if test passes – a lot of uncertainties due to band limitedness

Causality estimation - easy way

 "Heuristic" causality measure based on the observation that polar plot of a causal system rotates mostly clockwise (suggested by V. Dmitriev-Zdorov)

Causality measure (CM) can be computed as the ratio of clockwise rotation measure to total rotation measure in %.

If this value is below 80%, the parameters are reported as suspect for possible violation of causality.

Algorithm is good for numerical models (to find under-sampling), but no so good for measured data due to noise!

Stability and passivity in time-domain

■ The system is stable if output is bounded for all bounded inputs $|a(t)| < K \Rightarrow |b(t)| < M, \forall t$ (BIBO)

■ A multiport network is passive if energy absorbed by multiport $E(t) = \int_{-\infty}^{t} \left[\overline{a}^{t}(\tau) \cdot \overline{a}(\tau) - \overline{b}^{t}(\tau) \cdot \overline{b}(\tau) \right] \cdot d\tau \ge 0, \quad \forall t \qquad \text{(does not generate energy)}$ for all possible incident and reflected waves

- □ If the system is passive according to the above definition, it is also causal $\overline{a}(t) = 0, \forall t < t_0 \Rightarrow \int_{-\infty}^{t} \left[\overline{b}^t(\tau) \cdot \overline{b}(\tau)\right] \cdot d\tau \le 0 \Rightarrow \overline{b}(t) = 0, \forall t < t_0$
- **Thus, we need to check only the passivity of interconnect system!**

P. Triverio S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero, R. Achar, Stability, Causality, and Passivity in Electrical Interconnect Models, IEEE Trans. on Advanced Packaging, vol. 30. 2007, N4, p. 795-808.

Passivity in frequency domain

- Power transmitted to multiport is a difference of power transmitted by incident and reflected waves: $P_{in} = \sum_{n=1}^{N} |a_n|^2 - |b_n|^2 = \left[\overline{a}^* \cdot \overline{a} - \overline{b}^* \cdot \overline{b}\right]$ or $P_{in} = \overline{a}^* \cdot \overline{a} - \overline{a}^* \cdot S^* S \cdot \overline{a} = \overline{a}^* \cdot \left[U - S^* S\right] \cdot \overline{a}$
- Transmitted power is defined by Hermitian quadratic form and must be not negative for passive multiport for any combination of incident waves
- Quadratic form is non-negative if eigenvalues of the matrix are non-negative (Golub & Van Loan):

 $eigenvals [U - S^* \cdot S] \ge 0 \implies eigenvals [S^* \cdot S] \le 1$ (U is unit matrix)

Sufficient condition only if verified from DC to infinity (impossible for discrete Touchstone models)

Port 1

Port 2

S

 $Z_{02} \quad a_{\tau}$

 Z_{0N} a

Good Touchstone models of interconnects

- Must have sufficient bandwidth matching signal spectrum
- Must be appropriately sampled to resolve all resonances
- Must be reciprocal (linear reciprocal materials used in PCBs) $S_{i,i} = S_{i,i} \text{ or } S = S^{t}$
- Must be passive (do not generate energy) $P_{in} = \overline{a}^* \cdot [U - S^*S] \cdot \overline{a} \ge 0 \implies eigenvals [S^* \cdot S] \le 1$ from DC to infinity!
- Have causal step or impulse response (response only after the excitation) $S_{i,i}(t)_{i,j}$

$$S_{i,j}(t) = 0, t < T_{ij}$$

Quality metrics (0-100%) to define goodness

First introduced at IBIS forum at DesignCon 2010

Passivity Quality Measure:

$$PQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} PW_{n}\right), 0\right]\% \quad PW_{n} = 0 \ if \ PM_{n} < 1.00001; \ otherwise \ PW_{n} = \frac{PM_{n} - 1.00001}{0.1}$$

should be >99%
$$PM_{n} = \sqrt{\max\left[eigenvals\left(S^{*}(f_{n}) \cdot S(f_{n})\right)\right]}$$

Reciprocity Quality Measure:

$$RQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} RW_{n}\right), 0\right]\% \qquad RW_{n} = 0 \ if \ RM_{n} < 10^{-6}; \ otherwise \ RW_{n} = \frac{RM_{n} - 10^{-6}}{0.1}$$

should be >99%
$$RM_{n} = \frac{1}{N_{s}} \sum_{i,j} \left|S_{i,j}\left(f_{n}\right) - S_{j,i}\left(f_{n}\right)\right|$$

 Causality Quality Measure: Minimal ratio of clockwise rotation measure to total rotation measure in % (should be >80% for numerical models)

Preliminary quality estimation metrics

Preliminary Touchstone model quality can be estimated with Passivity, Reciprocity and Causality quality metrics (PQM, RQM, CQM)

Metric/Model Icon	🥝 - good	I acceptable	? - inconclusive	🤤 - bad
Passivity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]
Reciprocity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]
Causality	[100, 80]	(80, 50]	(50, 0]	

Color code	Passivity (PQM)	Reciprocity (RQM)	Causality (CQM)
Green – good	[99.9, 100]	[99.9, 100]	[80, 100]
Blue – acceptable	[99, 99.9)	[99, 99.9)	[50, 80)
Yellow – inconclusive	[80, 99)	[80, 99)	[20, 50)
Red - bad	[0, 80)	[0, 80)	[0, 20)

Example of preliminary quality estimation in Simbeor Touchstone Analyzer[™]

Small passivity & reciprocity violations in most of the models Low causality in some measured data due to noise at high frequencies

Rational approximation of S-parameters as the frequency-continuous model

$$\overline{b} = S \cdot \overline{a}, \quad S_{i,j} = \frac{b_i}{a_j} \bigg|_{a_k = 0 \ k \neq j} \Longrightarrow S_{i,j} (i\omega) = \left[d_{ij} + \sum_{n=1}^{N_{ij}} \left(\frac{r_{ij,n}}{i\omega - p_{ij,n}} + \frac{r_{ij,n}^*}{i\omega - p_{ij,n}^*} \right) \right] \cdot e^{-s \cdot T}$$

$$s = i\omega, \ d_{ij} - values \ at \infty, \ N_{ij} - number \ of \ poles,$$

Continuous functions of frequency defined from DC to infinity

 $s = i\omega$, $a_{ij} = values a_i \infty$, $N_{ij} = hamber of poles$, $r_{ij,n} = residues$, $p_{ij,n} = poles$ (real or complex), $T_{ij} = optional delay$

Pulse response is analytical, real and delay-causal: $S_{i,j}(t) = 0, \ t < T_{ij}$ $S_{i,j}(t) = d_{ij}\delta(t - T_{ij}) + \sum_{n=1}^{N_{ij}} \left[r_{ij,n} \cdot \exp(p_{ij,n} \cdot (t - T_{ij})) + r_{ij,n}^* \cdot \exp(p_{ij,n}^* \cdot (t - T_{ij})) \right], \ t \ge T_{ij}$ $Stable \quad \operatorname{Re}(p_{ij,n}) < 0$ $\operatorname{Passive if} \quad eigenvals \left[S(\omega) \cdot S^*(\omega) \right] \le 1 \ \forall \omega, \ from 0 \ to \infty$ $\operatorname{Reciprocal if} \quad S_{i,j}(\omega) = S_{j,i}(\omega)$ $\operatorname{May require enforcement}$

Bandwidth and sampling for rational approximation

□ If no DC point, the lowest frequency in the sweep should be

- Below the transition to skin-effect (1-50 MHz for PCB applications)
- Below the first possible resonance in the system (important for cables, L is physical length) $L < \frac{\lambda}{4} = \frac{c}{4f_l \cdot \sqrt{\varepsilon_{eff}}} \implies f_l < \frac{c}{4L \cdot \sqrt{\varepsilon_{eff}}}$
- The highest frequency in the sweep must be defined by the required resolution in time-domain or by spectrum of the signal (by rise time or data rate) $f_h > \frac{1}{2t_r}$
- The sampling is very important for DFT and convolutionbased algorithms, but not so for algorithms based on fitting
 - There must be 4-5 frequency point per each resonance
 - The electrical length of a system should not change more than quarter of wave-length between two consecutive points

Rational approximation can be used to

- Compute time-domain response of a channel with a fast recursive convolution algorithm (exact solution for PWL signals)
- Improve quality of tabulated Touchstone models
 - Fix minor passivity and causality violations
 - Interpolate and extrapolate with guarantied passivity
- Produce broad-band SPICE macro-models
 - Smaller model size, stable analysis
 - Consistent frequency and time domain analyses in any solver
- Measure the original model quality

Final quality estimation

Accuracy of discrete S-parameters approximation with frequency-continuous macro-model, passive from DC to infinity

$$RMSE = \max_{i,j} \left[\sqrt{\frac{1}{N} \sum_{n=1}^{N} \left| S_{ij}(n) - S_{ij}(\omega_n) \right|^2} \right]$$

□ Can be used to estimate quality of the original data $Q = 100 \cdot \max(1 - RMSE, 0)\%$

Model Icon/Quality	Quality Metric	RMSE
🥝 - good	[99, 100]	[0, 0.01]
S- acceptable	[90, 99)	(0.01, 0.1]
? - inconclusive	[50, 90)	(0.1, 0.5]
🤤 - bad	[0, 50)	> 0.5
🖻 - uncertain	[0,100], not passive or not reciprocal	

Example of final quality estimation in Simbeor Touchstone Analyzer®

All rational macro-models are passive, reciprocal, causal and have acceptable accuracy (acceptable quality of original models)

Conclusion: How to avoid problems with S-parameter models?

- Use reciprocity, passivity and causality metrics for preliminary analysis
 - RQM and PQM metrics should be > 99% (acceptable level)
 - CQM should be > 80% for all causal numerical models
- Use the rational model accuracy as the final quality measure
 - QM should be > 90% (acceptable level)
- Discard the model with low RQM, PQM and QM metrics!
 - The main reason is we do not know what it should be
- Models that pass the quality metrics may still be not usable or mishandled by a system simulator
 - Due to band-limitedness, discreteness and brut force model fixing
- Use rational or BB SPICE macro-models instead of Touchstone models for consistent time and frequency domain analyses

Contact and resources

□ Yuriy Shlepnev, Simberian Inc.

shlepnev@simberian.com

Tel: 206-409-2368

- To learn more on S-parameters quality see the following presentations (also available on request):
 - Y. Shlepnev, Quality Metrics for S-parameter Models, DesignCon 2010 IBIS Summit, Santa Clara, February 4, 2010
 - H. Barnes, Y. Shlepnev, J. Nadolny, T. Dagostino, S. McMorrow, Quality of High Frequency Measurements: Practical Examples, Theoretical Foundations, and Successful Techniques that Work Past the 40GHz Realm, DesignCon 2010, Santa Clara, February 1, 2010.
 - E. Bogatin, B. Kirk, M. Jenkins, Y. Shlepnev, M. Steinberger, How to Avoid Butchering S-Parameters, DesignCon 2011
 - Y. Shlepnev, Reflections on S-parameter quality, DesignCon 2011 IBIS Summit, Santa Clara, February 3, 2011

