

Decompositional Electromagnetic Analysis of Digital Interconnects

Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com

2013 IEEE International Symposium on Electromagnetic Compatibility, Colorado Convention Center, Denver, CO

Property rights disclosure

- Copyright © 2013 by Simberian Inc., All rights reserved.
 - THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO SIMBERIAN INC. AND MAY NOT BE REPRODUCED, PUBLISHED OR DISCLOSED TO OTHERS WITHOUT PERMISSION OF SIMBERIAN INC.
- Simberian® and Simbeor® are registered trademarks of Simberian Inc.
 - Other product and company names mentioned in this presentation may be the trademarks of their respective owners.

Outline

- Introduction
- Quality of S-parameter models
- Broadband material models
- Modeling discontinuities in isolation
- Validation and benchmarking
- Conclusion
- References and contacts

Introduction

- □ 10G Ethernet is practically mainstream now, 25-50 G is coming out...
 - Spectrum of signals ranges from DC or MHz frequencies up to 20-50 GHz and beyond – no established methodologies to design predictable interconnects
 - Improper interconnect modeling may result in multiple re-spins or complete failure due to interconnects
- What is the best way to analyze such interconnects?
 - Electromagnetic analysis as a whole
 - Suitable for EMC/EMI (radiation)
 - Inefficient for signal integrity analysis due to problem size and fine details
 - Decompositional electromagnetic analysis is the alternative
 - Divide into elements, build or get element models and unite
 - 2D, 3D, quasi-static or full-wave models can be used for the elements
 - Much faster and more accurate, but only if some conditions satisfied...

Decompositional analysis of a channel

(1) Quality of S-parameter models

- Multiports are usually described with S-parameter models
 - Produced by circuit or electromagnetic simulators, VNAs and TDNAs in forms of Touchstone or BB SPICE models
- Very often such models have issues and may be not suitable for consistent frequency and time domain analyses
 - S-parameter models must have sufficient bandwidth and satisfy passivity, reciprocity and causality conditions
- How to make sure that a model is suitable for analysis?
- The answer is the key element for design success

Good models of interconnects ...

- Must have sufficient bandwidth matching signal spectrum
- Must be appropriately sampled to resolve all resonances
- Must be passive (do not generate energy)

 $P_{in} = \overline{a}^* \cdot \left[U - S^* S \right] \cdot \overline{a} \ge 0 \quad \implies \quad \text{eigenvals} \left[S^* \cdot S \right] \le 1 \quad \text{from DC to infinity!}$

- Must be reciprocal (linear reciprocal materials used in PCBs) $S_{i,i} = S_{i,i}$ or $S = S^t$
- Must be causal (have causal step or impulse response or satisfy KK relations)

$$S_{i,j}(t) = 0, \ t < T_{ij}$$

$$S(i\omega) = \frac{1}{i\pi} PV \int_{-\infty}^{\infty} \frac{S(i\omega')}{\omega - \omega'} \cdot d\omega'$$

Model bandwidth and sampling

□ If no DC point, the lowest frequency in the sweep should be

- Below the transition to skin-effect (1-50 MHz for PCB applications)
- Below the first possible resonance in the system (important for cables, L is physical length)
- The highest frequency in the sweep must be defined by the required resolution in time-domain or by spectrum of the signal (by rise time or data rate) $f_h > \frac{1}{2t_r}$ $f_h > K \cdot f_{s1}$
- The sampling is very important for DFT and convolutionbased algorithms, but not so for algorithms based on fitting
 - There must be 4-5 frequency point per each resonance
 - The electrical length of a system should not change more than quarter of wave-length between two consecutive points

18

13 Nov 2009, 10:31:01, Simberian Inforeguency, [GHz]

 $L < \frac{\lambda}{4} = \frac{c}{4f_l \cdot \sqrt{\varepsilon_{eff}}} \implies f_l < \frac{c}{4L \cdot \sqrt{\varepsilon_{eff}}}$

-17.5

19

Model quality metrics (0-100%)

First introduced at IBIS forum at DesignCon 2010

Passivity Quality Measure:

$$PQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} PW_{n}\right), 0\right]\% \quad PW_{n} = 0 \ if \ PM_{n} < 1.00001; \ otherwise \ PW_{n} = \frac{PM_{n} - 1.00001}{0.1}$$

should be >99%
$$PM_{n} = \sqrt{\max\left[eigenvals\left(S^{*}(f_{n}) \cdot S(f_{n})\right)\right]}$$

Reciprocity Quality Measure:

$$RQM = \max\left[\frac{100}{N_{total}}\left(N_{total} - \sum_{n=1}^{N_{total}} RW_{n}\right), 0\right]\% \qquad RW_{n} = 0 \ if \ RM_{n} < 10^{-6}; \ otherwise \ RW_{n} = \frac{RM_{n} - 10^{-6}}{0.1}$$

should be >99%
$$RM_{n} = \frac{1}{N_{s}} \sum_{i,j} \left|S_{i,j}\left(f_{n}\right) - S_{j,i}\left(f_{n}\right)\right|$$

 Causality Quality Measure: Minimal ratio of clockwise rotation measure to total rotation measure in % (should be >80% for numerical models)

8/9/2013

Preliminary quality estimation metrics

Preliminary Touchstone model quality can be estimated with Passivity, Reciprocity and Causality quality metrics (PQM, RQM, CQM)

Metric/Model Icon	🥝 - good	- acceptable	Inconclusive	🤤 - bad
Passivity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]
Reciprocity	[100, 99.9]	(99.9, 99]	(99, 80]	(80, 0]
Causality	[100, 80]	(80, 50]	(50, 0]	

Color code	Passivity (PQM)	Reciprocity (RQM)	Causality (CQM)
Green – good	[99.9, 100]	[99.9, 100]	[80, 100]
Blue – acceptable	[99, 99.9)	[99, 99.9)	[50, 80)
Yellow – inconclusive	[80, 99)	[80, 99)	[20, 50)
Red - bad	[0, 80)	[0, 80)	[0, 20)

Example of preliminary quality estimation

Small passivity & reciprocity violations in most of the models Low causality in some measured data due to noise at high frequencies

Good S-parameter models must allow accurate approximation with frequency-continuous model

$$\overline{b} = S \cdot \overline{a}, \quad S_{i,j} = \frac{b_i}{a_j} \bigg|_{a_k = 0 \ k \neq j} \Longrightarrow S_{i,j} (i\omega) = \left[d_{ij} + \sum_{n=1}^{N_{ij}} \left(\frac{r_{ij,n}}{i\omega - p_{ij,n}} + \frac{r_{ij,n}^*}{i\omega - p_{ij,n}^*} \right) \right] \cdot e^{-s \cdot \frac{1}{2}}$$

Continuous functions of frequency defined from DC to infinity

 $s = i\omega, d_{ij} - values at \infty, N_{ij} - number of poles,$ $r_{ij,n} - residues, p_{ij,n} - poles (real or complex), T_{ij} - optional delay$

Impulse response is analytical, real and delay-causal: $S_{i,j}(t) = 0, \ t < T_{ij}$ $S_{i,j}(t) = d_{ij}\delta(t - T_{ij}) + \sum_{n=1}^{N_{ij}} \left[r_{ij,n} \cdot \exp(p_{ij,n} \cdot (t - T_{ij})) + r_{ij,n}^* \cdot \exp(p_{ij,n}^* \cdot (t - T_{ij})) \right], \ t \ge T_{ij}$ $Stable \quad \operatorname{Re}(p_{ij,n}) < 0$ $\operatorname{Passive if} \quad eigenvals \left[S(\omega) \cdot S^*(\omega) \right] \le 1 \ \forall \omega, \ from 0 \ to \infty$ $\operatorname{Reciprocal if} \quad S_{i,j}(\omega) = S_{j,i}(\omega)$ $\operatorname{May require enforcement}$

We can use it for final quality estimation with rational approximation

Accuracy of discrete S-parameters approximation with frequencycontinuous macro-model, passive from DC to infinity

$$RMSE = \max_{i,j} \left[\sqrt{\frac{1}{N} \sum_{n=1}^{N} \left| S_{ij}(n) - S_{ij}(\omega_n) \right|^2} \right]$$

original tabulated data
$$S_{i,j}(i\omega) = \left[d_{ij} + \sum_{n=1}^{N_{ij}} \left(\frac{r_{ij,n}}{i\omega - p_{ij,n}} + \frac{r_{ij,n}^*}{i\omega - p_{ij,n}^*} \right) \right] \cdot e^{-s \cdot T_{ij}}$$

□ Can be used to estimate quality of the original data $Q = 100 \cdot \max(1 - RMSE, 0)\%$

Model Icon/Quality	Quality Metric	RMSE
🥝 - good	[99, 100]	[0, 0.01]
✓- acceptable	[90, 99)	(0.01, 0.1]
? - inconclusive	[50, 90)	(0.1, 0.5]
🤤 - bad	[0, 50)	> 0.5
🖻 - uncertain	[0,100], not passive or not reciprocal	

Example of final quality estimation

All rational macro-models are passive, reciprocal, causal and have acceptable accuracy (acceptable quality of original models)

8/9/2013

© 2013 Simberian Inc.

(2) Broadband material models

- The largest part of interconnects are transmission line segments
- Models for transmission lines are usually constructed with a quasi-static or electromagnetic field solvers
 - T-lines with homogeneous dielectrics (strip lines) can be effectively analysed with quasi-static field solvers
 - T-lines with inhomogeneous dielectric may require analysis with a fullwave solver to account for the high-frequency dispersion
- Accuracy of transmission line models is mostly defined by availability of broadband dielectric and conductor roughness models
- This is another most important elements for design success

Causal dielectric models for PCB and PKG

Multi-pole Debye-Lorentz (real and complex poles)

$$\varepsilon(f) = \varepsilon(\infty) + \sum_{n=1}^{N} \frac{\Delta \varepsilon_n}{1 + i \frac{f}{fr_n}} + \sum_{k=1}^{K} \frac{\Delta \varepsilon_k \cdot fr_k^2}{fr_k^2 + 2i \cdot f \cdot \frac{\delta_k}{2\pi} - f^2}$$

Requires specification of value at infinity and poles/residues/damping or DK and LT at multiple frequency points

Wideband Debye (Djordjevic-Sarkar)

$$\varepsilon(f) = \varepsilon_r(\infty) + \frac{\varepsilon_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m^2} + if}{10^{m^1} + if}\right]$$

Continuous-spectrum model Requires specification of DK and LT at one frequency point

- Models for dielectric mixtures (Wiener, Maxwell-Garnet, ...)
- Models for anisotropic dielectrics (separate definition of Z, and XY-plane components of permittivity tensor)

Parameters of the causal models are not available from manufacturers!

Causal roughness models

Modified Hammerstad (red), 2.08 $K_{rhu} = 1 +$ 1.96 Simbeor (black) 1.84 Krh; $K_{rh} = 1 + \left(\frac{2}{-1} \cdot \arctan \right) \left(1.4 \right)$ (RF-1)and Huray's snowball (blue) $\overline{Kh2_j}$ 1.6 Knj 1.48 models (RTF/TWS foil example) 1.36 1.24 $K_{rs} = 1 + |\tanh| 0.56 \frac{\Delta}{s}$ See references in the paper 1.12

2.2

1×10

- Causal if correction is applied to conductor surface impedance operator
- □ Where to get the model parameters?

(EMC2012 and DC2012)

- SR (delta) and RF for Simbeor and MHCC
- Number of balls, ball size and tile area for Huray's model

 1×10^{8}

1×10¹⁰

1×10¹¹

Frequency, Hz

1×10⁹

Material parameters identification with generalized modal S-parameters (GMS-parameters)

 Measure S-parameters of two test fixtures with different length of line segments S1 and S2
 Extract Generalized Modal S-parameters of the line difference

3. Select material model and guess values of the model parameters

4. Compute GMS-parameters of the line difference segment by solving Maxwell's equation for t-line cross-section

5. Adjust material parameters until computed GMS parameters fit measured GMSparameters with the computed

See references in the paper Simberian's patent pending **#13/009,541**

8/9/2013

Example: Nelco N4000-13EP

 Example for the original board made with Nelco 4000-13EP investigated in: D. Dunham, J. Lee, S. McMorrow, Y. Shlepnev, 2.4mm Design/Optimization with 50 GHz Material Characterization, DesignCon2011

Test structures are pre-qualified for the identification up to 50 GHz in the paper

6 test fixtures with 2, 4 and 6 inch strip line segments in Layer 1 (S1) and Layer 4 (S4)

Scott McMorrow from Teraspeed Consulting Group designed launches for 2.4mm Molex connectors, board made by Molex and measurements done by David Dunham, Molex

Test board and cross-section

- Strip line segments in Nelco N4000-13EP
- 2 inch, 4 inch and 6 inch segments with launches and Molex 2.6 mm connectors to identify material parameters

From datasheet Dk is 3.6-3.7 and LT 0.008-0.009

Electrical Properties					
Dielectric Constant (50% resin content)					
@ 1 GHz (RF Impedance)	3.7	3.4	3.7	3.4	IPC-TM-650.2.5.5.9
@ 2.5 GHz (Split Post Cavity)	3.7	3.2	3.7	3.2	
@ 10 GHz (Stripline)	3.6	3.2	3.6	3.2	IPC-TM-650.2.5.5.5
@ 10 GHz (Split Post Cavity)	3.7	3.3	3.7	3.3	
Dissipation Factor (50% resin content)					
@ 2.5 GHz (Split Post Cavity)	0.009	0.008	0.009	0.008	
@ 10 GHz (Stripline)	0.009	0.008	0.009	0.008	IPC-TM-650.2.5.5.5
@ 10 GHz (Split Post Cavity)	0.008	0.007	0.008	0.007	

Strip width 8.5 mil (both S1 and S4)

Different methods produce slightly different parameters Which one is correct? What causal model to use?

Wideband Debye model with parameters from specs

Dk=3.8, LT=0.008 @ 10 GHz, WD model, no roughness

BIG DIFFERENCE IN THE INSERTION LOSS!!!

8/9/2013

© 2013 Simberian Inc.

WD model with adjusted loss tangent No roughness

 Dk=3.8, LT=0.0115 @ 10 GHz, no adjustment for low frq. – acceptable fit (green lines) to measured GMS-parameters (red lines)
 GMS Insertion Loss
 GMS Group Delay

WD model with parameters from specs and with MHCC roughness model

Dk=3.8, LT=0.008 @ 10 GHz – as in specs, modified Hammerstadt correction coefficient SR=0.27, RF=4 (relative resistivity 1.05) produces good fit (black lines) to measured GMS-parameters (red lines)

WICH MODEL IS ACCEPTABLE - WITH OR WITHOUT ROUGHNESS?

8/9/2013

© 2013 Simberian Inc.

Models for differential strips (4 mil wide, 4 mil distance)

Model with the roughness predict much more loss for a different cross-section then models with the increased loss tangent!!!

Summary on material models

- Both dielectric and conductor roughness models require procedure to identify or confirm broadband models
- Provided example illustrates typical situation and importance of the dielectric and conductor roughness models identification
- Proper separation of loss and dispersion effects between dielectric and conductor models is very important, but not easy task
 - Without proper roughness model dielectric models become dependent on strip width and cross-section
- Another problem with the PCB materials is the layered structure and associated with that anisotropy
 - Difference between the vertical and horizontal components of the effective dielectric constant may be substantial and must be taken into account

(3) Modeling discontinuities in isolation

- A channel is typically composed with transmission lines of different types and transitions (vias, launches, connectors,...)
- The transitions may be reflective due to physical differences in cross-sections of the connected lines
 - The reflections cause additional losses and resonances and, thus, unwanted signal degradation
- The effect of the transitions can be accounted for with models built with a full-wave 3D analysis
- If such analysis is possible in isolation from the rest of the board up to a target frequency, the structure is called localizable
- Only localizable transitions must be used to design predictable interconnects this is one of the most important elements for design success

How estimate the localization?

- Change simulation area or simulate with different boundary conditions and observe changes
- Example of conditionally localized structure

© 2013 Simberian Inc.

Example of non-localizable via

Change of simulation area size causes huge differences in reflection and insertion loss – unpredictable "pathological" structure

8/9/2013

© 2013 Simberian Inc.

(4) Benchmarking or validation

- How to make sure that analysis works? Build validation boards!
- Controlled board manufacturing is the key for success
 - Fiber type, resin content, copper roughness must be strictly specified or fixed!!!
- Include a set of structures to identify one material model at a time
 - Solder mask, core and prepreg, resin and glass, roughness, plating,...
- Include a set of structures to identify accuracy for transmission lines and typical discontinuities
 - Use identified material models for all structures on the board consistently
 - No tweaking discrepancies should be investigated
- Use VNA/TDNA measurements and compare both magnitude and phase (or group delay) of all S-parameters

Example of benchmarking boards

PLRD-1 (Teraspeed Consulting, DesignCon 2009, 2010)

Isola, EMC 2011, DesignCon 2012

CMP-08 (Wild River Technology & Teraspeed Consulting, DesignCon 2011)

CMP-28, Wild River Technology, DesignCon 2012

Channel Modeling Platform CMP-08

- Validation board with coupled microstrip and strip structures designed with Simbeor software by Wild River Technology
 - J. Bell, S. McMorrow, M. Miller, A. P. Neves, Y. Shlepnev, Unified Methodology of 3D-EM/Channel Simulation/Robust Jitter Decomposition, DesignCon2011 (also App Note #2011_02 at www.simberian.com)

Analysis to measurement correlation investigation on 38 structures up to 30 GHz!

3", 6", and 11" Differential THRU structures are used to benchmark simulationsmeasurements, and jitter tools

CMP-08 examples

- Three-inch stripline differential traces
- Results of S-parameter comparisons from models and from VNA and TDNA for the 3 inch differential stripline

© 2013 Simberian Inc.

CMP-08 examples

- Three-inch stripline differential traces
- Using recorded differential stimulus
- Two co-simulations with "modeled"
 S-parameters
- Two co-simulations with "measured" S-parameters
- One direct measurement
- Illustrating "good" agreement

8/9/2013

Molex board example - S1 Opt1

Material parameters are identified earlier

S21 Group Delay (measured – red, simulated - black)

Conclusion

Decompositional electromagnetic analysis is the fastest and the most accurate technique for signal integrity analysis ONLY IF...

1) S-parameter model quality is ensured

Valid for models both built and from vendors

2) Material parameters are properly identified or confirmed Accuracy of transmission line models depends on the dielectric and conductor roughness models

3) All discontinuities in a channel are localized

Via-holes, breakouts and connector launches must be designed to allow analysis in isolation

4) Analysis tools are validated with measurements

Magnitude and angles or GD of all S-parameters should be compared

Contact and resources

Yuriy Shlepnev, Simberian Inc., Booth #126 shlepnev@simberian.com

Tel: 206-409-2368

- Webinars on decompositional analysis, S-parameters quality and material identification <u>http://www.simberian.com/Webinars.php</u>
- Simberian web site and contacts <u>www.simberian.com</u>
- Demo-videos <u>http://www.simberian.com/ScreenCasts.php</u>
- App notes <u>http://www.simberian.com/AppNotes.php</u>
- □ Technical papers <u>http://kb.simberian.com/Publications.php</u>
- □ Presentations <u>http://kb.simberian.com/Presentations.php</u>
- Download Simbeor® from <u>www.simberian.com</u> and try it on your problems for 15 days

