Back to basics: the onset of skin effect in circuit board traces

Eric Bogatin, Teledyne LeCroy Signal Integrity Academy eric@beTheSignal.com

Yuriy Shlepnev, Simberian Inc. shlepnev@simberian.com

Chun-Ting "Tim" Wang Lee, University of Colorado Chunting.wanglee@colorado.edu

Agenda

- Skin effect in stripline environment
- Matching measurement of skin effect to simulation
 - Experiment setup
 - Measurement
 - Simulation
- Summary

The Skin effect and $R_{Len}(f)$, $L_{Len}(f)$ in stripline

How do we match measured skin effect to simulation?

1 MHz

It comes down to matching R_{Len}(f) and L_{Len}(f)

What are the trace parameters that affect R_{Len} (f) and L_{Len}(f) ?

Expect to affect $R_{Len}(f)$ to first order

- Width of trace
- Thickness of trace
- Conductivity of copper

Expect to affect $L_{Len}(f)$ to first order

- Width of trace
- Substrate height

Sensitivity of $R_{Len}(f)$ and $L_{Len}(f)$ to W

Both curves are sensitive to width change. Need to extract the fabricated trace width.

UBM

5

Sensitivity of $R_{Len}(f)$ and $L_{Len}(f)$ to H1, H2

To first order, $R_{Len}(f)$ is not sensitive to H changes, and $L_{Len}(f)$ most influenced by H1.

*less than 3% change from 20% H2 change

Sensitivity of $R_{Len}(f)$ and $L_{Len}(f)$ to Sigma and T

 $R_{Len}(f)$ is sensitive to sigma and t change, but $L_{Len}(f)$ is insensitive to sigma.

Reducing number of variables: divide and conquer

Variables: W, Sigma, T and H1.

Is there a way to reduce the number of variable?

New technique to extract delta width and sheet resistance

 $w + \Delta w \rightarrow$

Assume rectangular cross-section

 $R = R_{\Box} \cdot \frac{len}{w + \Delta w}$

 R_{\Box} = sheet resistance, Δw = etchback/overplate

5 different trace widths to extract R_{sheet} and delta W

$$\frac{1}{R} = G = \frac{1}{R_{\Box} \cdot len} (w + \Delta w) = mw + b$$
$$G = m (w + \frac{b}{m}); R_{\Box} = \frac{1}{m \cdot len}; \Delta w = \frac{b}{m}$$

UBM

DC measurement with precision uOhm-meter

Extraction of R_{sheet} with DC measurement

Reducing number of variables: divide and conquer

Variables: Sigma, T and H1. $w + \Delta w$ σt len 9.4 1E2 9E1 9.2 +20 % H1 9.0 8E1 -20 % Thickness 8.8 7E1 (mOhm) 8.6 8.4 8.2 per in (nH) 6E1 +20 % H2 Nominal 5E1 -20 % Sigma 8.0 7.8 R per in 4E1 -20 % H2 7.6 3E1 +20 % Thickness 7.4 7.2 +20 % Sigma -20 % H1 7.0 2E1-6.8 1E6 1E7 1E8 1E4 1E5 1E6 1E7 1E8 freq, Hz

freq, Hz

JAN 31-FEB 2, 2017

Road to R(f) & L(f)

Structures:

- Shorted transmission line
- 2X-thru

Measurement:

- S-parameter with 2 port technique
- What do we expect?

Data Process:

1. De-embedding and converting S-parameter to Zin

SET2DIL

Footprint

- 2. Extracting R(f)and L(f) from Zin
- 3. Takeingthe difference between two lengths
- 4. Fitting, sigma, T and H1 to the curves

Low frequency behavior: Input impedance of shorted tline and the 2 port technique

At low frequencies, the input impedance of a transmission line is:

$$\tilde{Z}_{in} \Longrightarrow R_{Len}(f) + j\omega L_{Len}(f)$$

1 port measurement with estimated DC sheet resistance: R_{DC} =15 mOhm

$$S_{11} = \frac{R_{DC} - 50}{R_{DC} + 50} = -0.005 \,\mathrm{dB}$$

Port 2 Probe

Sensitive to Contact resistance > 15 mOhm

2 port technique for ultra low impedance measurement:

 $|S_{21}| = -64 \text{ dB}$

 $\tilde{Z}_{in} = 25 \frac{\tilde{S}_{21}}{1 - \tilde{S}_{21}} \Longrightarrow \tilde{S}_{21} = \frac{Z_{in}}{25 + \tilde{Z}_{in}}$

Not sensitive to

contact resistance!

CON° 2017 HEETS THE BOARD

Applying Rule #9: Expected R_{Len}(f) behavior and identifying artifacts

Artifact #1: Transmission line effect in R per len curve

Limiting factor: DUT is 1.3 inch.

At what frequency is measured data Tline effect free? 3% Resistance difference at 150 MHz

JAN 31-FEB 2, 2017

Artifact #2 phase introduced by probe length

Variation in nominally identical thrus

Model of fixture built and simulated in ADS

Nominal six same thrus

Estimated probe delay: 2 inches @ 8 inch/nsec ~250 psec

()

UBM

18

For a given Time Delay, delta R increases with frequency

A new flexible deembedding technique: negative length

52 Ohm, 1.5 inch, FR4

Parameter	After De-embedding
S ₁₁	No ripples
S ₂₁	Flat
Phase S ₂₁	0 degree

JAN 31-FEB 2, 2017

How do we know if we deembed enough/too much?

$$\tilde{Z}_{in} = 25 \frac{\tilde{S}_{21}}{1 - \tilde{S}_{21}} \Rightarrow \left| \tilde{Z}_{in} \right| = 25 \frac{\left| \tilde{S}_{21} \right|}{\sqrt{1 - 2 \left| \tilde{S}_{21} \right| \cos(\theta_{21}) + \left| \tilde{S}_{21} \right|^2}} \quad \varphi = \angle \tilde{Z}_{in} = \tan^{-1} \left(\frac{\sin(\theta_{21})}{\cos(\theta_{21}) - \left| \tilde{S}_{21} \right|} \right)$$

Mathematically, -90 < phi < 90 because -90< arctan <90, but we are dealing with numerical simulations when de-embedding. We need to make sure de-embedded result is physical.

 $|Z_{in}|\cos(\varphi) = R$

JAN 31-FEB 2, 2017

 $|Z_{in}|\sin(\varphi)| = \omega L$

TD

Review of Measurement procedure

- 2 port measurement
 - Long structure
 - Short structure
- Process
 - Convert to Zin to R(f) and L(f).
 - De-embed both structures with negative length transmission.
 - Take the difference between the R(f), L(f) results from long structure and short.

Deembedded RF Measurement and DC consistency test

Fitting to the T With Simbeor

Param.	Vendor value	Input to Simbeor	
Dk	4.3	4.3	
Df	0.0165	0.0165	
H1 (mil)	14.1	12.9	
H2 (mil)	42.1	40.9	
W (mil)	6	4.77	
T (mil)	1.2	1.2	
σ (S/m)	5.8e7	5.6e7	
$R_{_{\Box}} = 0.59$	_ 1		

 $\Delta w = -1.23$ mils

JAN 31-FEB 2, 2017

Summary

- Demonstrated skin depth and current distribution in a trace.
- Used 5x line technique to extract etchback and sheet resistance.
- Built a low cost precision micro-Ohm meter for low level measurement.
- Used SET2DIL test pattern in designing test patterns.
- Performed 2-port technique for ultra-low resistance RF measurement.
- Achieved DC and RF resistance correlation within 3%.
- Illustrated the impact of probe length uncertainty.
- Introduced a new flexible negative length de-embedding technique.

JAN 31-FEB 2, 2017

8 GHz

Acknowledgment

- Don DeGroot, CCN
- Mike Resso, Keysight
- Heidi Barnes, Keysight
- Prof. Melinda Piket-May, University of Colorado
- Bill Hargin, Nanya (initial funding)

