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Introduction 
• S-parameter models are becoming ubiquitous in design of 

multi-gigabit interconnects 
– Connectors, cables, PCBs, packages, backplanes, … ,any LTI-system in 

general can be characterized with S-parameters from DC to daylight 
• Electromagnetic analysis or measurements are used to build 

S-parameter Touchstone models 
• Very often such models have quality issues: 

– Reciprocity violations 
– Passivity and causality violations 
– Common sense violations 

• And produce different time-domain and even frequency-
domain responses in different solvers! 
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What are the major problems? 
• Model bandwidth deficiency   

– S-parameter models are band-limited due to limited capabilities of 
solvers and measurement equipment  

– Model should include DC point or allow extrapolation, and high 
frequencies defined by the signal spectrum 

• Model discreteness 
– S-parameter models are matrix elements at a set of frequencies 
– Interpolation or approximation of tabulated matrix elements may be 

necessary both for time and frequency domain analyses 
• Model distortions due to 

– Measurement or simulation artifacts 
– Passivity violations and local “enforcements” 
– Causality violations and “enforcements” 

• Human mistakes of model developers and users in general 
 



Pristine models of interconnects 
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• Must have sufficient bandwidth matching signal spectrum 
• Must be appropriately sampled to resolve all resonances 
• Must be reciprocal (linear reciprocal materials used in PCBs) 

 
• Must be passive (do not generate energy) 

 
 

• Have causal step or pulse response (response only after the 
excitation) 
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What if models are not pristine? 
• Reciprocity, passivity and causality metrics was recently 

introduced for the model pre-qualification at: 
– Y. Shlepnev, Quality Metrics for S-parameter Models, DesignCon 2010 IBIS Summit, Santa Clara, 

February 4, 2010 
– H. Barnes, Y. Shlepnev, J. Nadolny, T. Dagostino, S. McMorrow, Quality of High Frequency 

Measurements: Practical Examples, Theoretical Foundations, and Successful Techniques that Work 
Past the 40GHz Realm, DesignCon 2010, Santa Clara, February 1, 2010. 

– Both IBIS and tutorial materials are available at 
http://www.simberian.com/TechnicalPresentations.php  

– Free Simbeor L0 software can be used to pre-qualify the models –  
available at http://www.simberian.com  

• Models with bad metrics must be discarded! 
• Models that pass quality metrics may still be not usable or 

mishandled by a system simulator 
• The main reasons are band-limitedness, discreteness and 

ignorant model butchering 
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Computation of system response requires 
frequency-continuous models 
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Fourier Transforms 
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For TD analysis we can either use Discrete Fourier Transforms (DFT) and convolution 
or approximate discrete S-parameters with frequency-continuous causal functions with 
analytical pulse response 

FD 
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Rational approximation of S-parameters is such 
frequency-continuous model 

• Pulse response is analytical, real and delay-causal: 
 
 

• Stable  
• Passive if 
• Reciprocal if 
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• If no DC point, the lowest frequency in the sweep should be 
– Below the transition to skin-effect (1-50 MHz for PCB applications) 
– Below the first possible resonance in the system 

(important for cables, L is physical length) 

• The highest frequency in the sweep must be  
defined by the required resolution in time-domain  
or by spectrum of the signal (by rise time or data rate) 
 

• The sampling is very important for DFT and convolution- 
based algorithms, but not so for algorithms based on fitting 

– There must be 4-5 frequency point per each resonance 
– The electrical length of a system should not change more than  

quarter of wave-length between two consecutive points 

 

Bandwidth and sampling for  
rational approximation 
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Rational approximation can be used to 
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• Compute time-domain response of a channel with a fast 
recursive convolution algorithm (exact solution for PWL 
signals) 

• Improve quality of tabulated Touchstone models 
• Fix minor passivity and causality violations 
• Interpolate and extrapolate with guarantied passivity 

• Produce broad-band SPICE macro-models 
• Smaller model size, stable analysis 
• Consistent frequency and time domain analyses in any solver 

• Measure the original model quality with the Root Mean 
Square Error (RMSE) of the rational approximation: 
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So, how to avoid butchering  
S-parameters?  

• Use reciprocity and passivity metrics for 
preliminary analysis 
– RQM and PQM metrics should be > 80% 

• Use the rational model quality metric as the 
final measure  
– QM should be > 90% 

• Otherwise discard the model 
– The main reason is we do not know what it 

originally was and should be – no information  
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Examples 
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Acceptable (see 
next slides) 

Discard 

Acceptable 

Common sense analysis of system response may be also useful 



Acceptable Model Example:  
U-shaped 10-in differential link 

• Model created with TDNA LeCroy SPARQ by Peter Pupalaikis, 2001 points from 0 to 
40 GHz 

• 4 by 4 S-matrix is approximated with rational macro-model with 300-400 poles per 
element, max RMSE=0.055, Q=94.5% 
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|SD1D2| 

|SD1D1| 

Rational Macro-Model 

There is transmission along the traces 
and additional pad-to-pad transmission 
at all frequencies 
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• 40 ps 10-90% Gaussian step response (-20 dB at 22 GHz, -40 dB at 31 GHz)  
 
 
 
 
 
 
 
 
 
 
 
 
 

• The response shows clearly that there are “shortcuts” in the system 
• Any “causality enforcement” may be erroneous for such cases! 

Acceptable Model Example:  
U-shaped differential link TDT 
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~0.2 ns 

~2.1 ns 
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Conclusion 
• Models must be appropriately sampled over the bandwidth 

matching the signal spectrum 
• Reciprocity, passivity and causality of interconnect component 

models must be verified before use 
– Both measured and computational models may have severe problems 

and not acceptable for any analysis 

• Rational macro-models with controlled accuracy over the 
model frequency band can be used to  
– Do consistent frequency and time domain analyses 
– Estimate quality of the tabulated models  

• Bad models with small quality metrics must be discarded 



Contact and resources 
• Yuriy Shlepnev, Simberian Inc. – Booth #815 

shlepnev@simberian.com 
Cell: 206-409-2368 

• See more examples at the end of this presentation 
• To learn on quality metrics further see slides from 

DesignCon2010 tutorial (available on request) 
– H. Barnes, Y. Shlepnev, J. Nadolny, T. Dagostino, S. McMorrow, Quality of High Frequency 

Measurements: Practical Examples, Theoretical Foundations, and Successful Techniques 
that Work Past the 40GHz Realm 

• Free version of Simbeor L0 software used to plot and estimate 
quality of S-parameters is available at www.simberian.com  
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Appendix: Examples 
• Example 1: Network with 1 real pole 
• Example 2: Network with 2 complex poles 
• Example 3: Network with infinite number of 

poles 
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Example 1: Network with one real pole –  
shunt capacitor sampled up to 50 GHz 

• 13 pF capacitance shunt to the ground 
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1 2 

Identified with RMSE=8.0e-7 
(~100%) 

Sampled up to 50 GHz with 1 
GHz step (circles) 

1,2

0

1
11
2

S
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+ ⋅ ⋅

C 

real pole at 489.707 MHz can be identified with just 
5 frequency samples Identified with RMSE=1.0e-6 

(~100%) 

Sampled up to 50 GHz with 10 
GHz step (stars) 

Zero at infinity 

2-ps pulse responses are identical and practically 
independent of discretization in the frequency 
domain! 

No artifacts! 
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Example 1: Network with one real pole –  
shunt capacitor sampled up to 5 GHz 

• 13 pF capacitance shunt to the ground 
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1 2 

Identified with RMSE=5.4e-7 
(~100%) 

Sampled up to 5 GHz with 100 MHz 
step (circles) 
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real pole at 489.707 MHz can be identified with just 
5 frequency samples Identified with RMSE=9.3e-7 

(~100%) 

Sampled up to 5 GHz with  
1 GHz step (stars) 

Still no artifacts! 

2-ps pulse responses are identical and practically 
independent of discretization in the frequency 
domain! 
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Example 2: Network with two complex poles – 
shunt RLC circuit sampled up to 50 GHz 

• Shunt tank: C=13 pF, L=50 pH, R=1 K 
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Identified with RMSE=6.4e-7 
(~100%) 

Sampled up to 50 GHz with 1 
GHz step (circles) 

resonance at 6.24 GHz can be identified with 5 
frequency samples Identified with RMSE=6.7e-7 

(~100%) 

Sampled up to 50 GHz with 10 
GHz step (stars) 

2-ps pulse responses are identical and practically 
independent of discretization in the frequency 
domain! 
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Example 2: Network with two complex poles – 
shunt RLC circuit sampled up to 5 GHz 

• Shunt tank: C=13 pF, L=50 pH, R=1 K 
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Identified with RMSE=9.8e-7 
(~100%) 

Sampled up to 5 GHz with 100 
MHz step (circles) 

resonance at 6.24 GHz can be identified with 5 
frequency samples 

2-ps pulse responses are identical and practically 
independent of discretization in the frequency 
domain! 

Identified with RMSE=3.4e-7 
(~100%) 

Sampled up to 5 GHz  
with 1 GHz step (stars) 
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Example 3: Network with infinite number of 
poles – segment of ideal transmission line 

• T-line segment: Zo=50 Ohm, Td=1 ns 
50 Ohm termination 

• |S11| is exactly 0 from DC to infinity 
• |S12| is exactly 1 from DC to infinity  
• Phase is growing linearly 
• Group Delay is exactly 1 ns from DC to infinity  
• Such network is obviously non-physical  
• We will try to sample and approximate |S21| over some frequency band and 

compare the step responses 
 
 
 

22 

Exact response to 100 ps delayed step with 20 ps rise time (10-90%) 

1.1 ns 

0.5 
V 

0 T 
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Example 3: Segment of ideal transmission line 
sampled up to 25 GHz 

• Sampled with adaptive frequency sweep from 1 MHz to 25 GHz (628 samples) –  
stars and pluses on the left graph 

• Approximated with rational macro-model with 100 poles (RMSE=0.0037, Q=99.63) –  
solid lines on left graph and TD graph  
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|S11| 

Group Delay 

Ripples due to 
energy above 25 
GHz 

Non-causality? 
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Example 3: Segment of ideal transmission line 
sampled up to 50 GHz 

• Sampled with adaptive sweep from 1 MHz to 50 GHz (1278 samples) –  
stars and pluses on the left graph 

• Approximated with rational macro-model with 190 poles (RMSE=0.0045, Q=99.55) –  
solid lines on left graph and TD graph  
 

24 

|S11| 

Group Delay 

Smaller ripples 
due to small 
energy above 50 
GHz! 

Spectrum of ramped step stimulus still exceeds the bandwidth of the model!  
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Example 3: Segment of ideal transmission line 
sampled up to 50 GHz 
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No ripples in the computed time-domain response – model bandwidth 
matches the excitation spectrum! 

Gaussian step stimulus with 20 ps rise time (10-90%) 
Spectrum: -20 dB at 44 GHz and -40 dB at 62 GHz 

Gaussian Step (ideal step filtered with the 
Gaussian filter) 

Rational Macro-Model Response 

No corners No ripples! 
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