DESIGNGON[®] 2014

JANUARY 28-31, 2014 SANTA CLARA CONVENTION CENTER

Lessons learned: How to Make Predictable PCB Interconnects for Data Rates of 50 Gbps and Beyond

Wendem Beyene, Rambus Inc. Yeon-Chang Hahm, Rambus Inc. Jihong Ren, Rambus Inc.

Dave Secker, Rambus Inc. Don Mullen, Rambus Inc. Dr. Yuriy Shlepnev, Simberian Inc.

Rambus

Outline

- Introduction
- Board Design
- Material models
- Validation
- Conclusion

Introduction

- Demands for bandwidth continue to grow
- High bandwidth necessitates increase in data rate
- Growth of data rate has been sustained by increasing the performance of I/O circuits
- Electronic and I/O power consumption increases with increasing the interface speed

⇒ Data rate increase cannot only come from I/O circuit

 Optical interconnects are not currently adopted for backplane links due to cost, manufacturability and power efficiency

Introduction Cont'd

- Proposals for next generation standards of electrical signaling to run at 50 Gbps
- Copper based interconnect systems utilizing advanced connectors, packages, and boards
- To minimize the loss in long traces, board and packages with low-loss laminates are required
- It is essential to accurately model the board loss
- The models of the traces have to be broadband
 - Dielectric dispersion : dielectric constant and loss tangent
 - Conductor loss : skin effects and surface roughness

Photo of the Four Boards

• Several boards and structures designed for material characterization

- Isola FR408HR and Nelco 4000-13 EPSI with RTF copper foil and standard glass weave
- Megtron 6 with finish and Reverse-Treated Foil finish and Hyper Very Low Profile

2/10/2014

Board Stackups

		Class trues			Diele strie Constant						
Stackup	Segment	Glass type			Dielectric Constant			In	Thickness (mil)		
		MEG 6	EPSI	FR408HR	MEG 6	EPSI	FR408HR	MEG 6	EPSI	FR408HR	
	Mask							0.8	0.8	0.8	
L1	Foil							1.6	1.6	1.6	
	Prepreg	1035(70)	1080(65)	1080(65)	3.35	3.2	3.46	5.37	5.12	5.52	
		1078(72)	1080(65)	1080(65)	3.3	3.2	3.46				
L2								1.2	1.2	1.2	
	Core	1-3313	1-2116	1-2116	3.71	3.38	3.7	3.9	5.00	5.00	
L3								1.2	1.2	1.2	
	Prepreg	3313(54)	106(75)	2116(55)	3.71	3.11	3.68	6.56	5.88	9.08	
		3313(54)	2116(55)	2116(55)	3.71	3.31	3.68				
L4								1.2	1.2	1.2	
	Core	2-3313	2-1080	1-1652	3.71	3.25	3.8	7.8	6.0	6.0	
L5								1.2	1.2	1.2	
	Prepreg	3313(54)	2116(55)	2116(55)	3.71	3.31	3.68	7.4	6.72	9.92	
		3313(54)	106(75)	2116(55)	3.71	3.11	3.68				
L6								1.2	1.2	1.2	
	Core	1-3313	1-2116	1-2116	3.71	3.38	3.7	3.9	5.0	5.0	
L7								1.2	1.2	1.2	
	Prepreg	1078(72)	1080(65)	1080(65)	3.30	3.2	3.46	5.37	5.12	5.52	
		1035(70)	1080(65)	1080(65)	3.35	3.2	3.46				
L8	Foil							1.6	1.6	1.6	
	Mask							0.8	0.8	0.8	

DesignCon[®] 2014

Structures and Typical Models

	Probe pads	1	
6 in. stripl	ine GND	12 in. stripline	Ī

Laminate Types	Dielectric Constant	Dissipation Factor	Amplitude of Surface Roughness
Megtron 6 HVLP	3.6	0.004	1.5 – 2.0 um
Megtron 6 RTF	3.6	0.004	7.0 – 8.0 um
Nelco N4000-13 EPSI	3.2	0.008	7.0 – 8.0 um
FR408HR	3.65	0.0095	7.0 – 8.0 um
Typical FR-4	4.3	0.02	7.0 – 8.0 um

- The striplines with two different lengths : 6 in and 12 in.
- The four boards have different laminates and surface roughness

Frequency-Domain Responses

- Magnitude of differential and common-mode insertion loss for 12-in striplines
 - Measured loss of the four laminates
 - Response of FR4 is from simulation

Time-Domain Responses

- Based on the measured S-parameters
 - Group delay per in. from measured S-parameters
 - Single-bit (pulse with width = 20 ps) responses

Board Cross-Sections

FR408 HR

Nelco N4000-13EPSI

Megtron 6 RTF

Megtron 6 HLVP

Cross-sectioned of the four boards

- Finding accurate dimensions are critical to modeling DESIGNCON[®] 2014

Material Models

- The largest part of interconnects are transmission line segments
- Models for transmission lines are usually constructed with a quasi-static or electromagnetic field solvers
- Accuracy of transmission line models is mostly defined by availability of broadband dielectric and conductor roughness models
- This is one of the most important elements for design success

Broadband material models

• Dielectric models:

Wideband Debye (aka Djordjevic-Sarkar):

$$\varepsilon(f) = \varepsilon_r(\infty) + \frac{\varepsilon_{rd}}{(m_2 - m_1) \cdot \ln(10)} \cdot \ln\left[\frac{10^{m^2} + if}{10^{m^1} + if}\right]$$

Continuous-spectrum model Requires specification of DK and LT at one frequency point (2 parameters)

Requires specification of value at infinity and poles/residues or DK and LT at multiple frequency points (more than 2 parameters)

DESIGN CON[®] 2014

Multi-pole Debye:

$$\varepsilon(f) = \varepsilon(\infty) + \sum_{n=1}^{N} \frac{\Delta \varepsilon_n}{1 + i \frac{f}{fr_n}}$$

• Conductor surface roughness models:

Modified Hammerstad (2 parameters):

$$K_{rh} = 1 + \left(\frac{2}{\pi} \cdot \arctan\left[1.4\left(\frac{\Delta}{\delta}\right)^2\right]\right) \cdot \left(RF - 1\right)$$

Huray snowball (1-ball, 2 parameters):

$$K_{rhu} = 1 + \left(\frac{N \cdot 4\pi \cdot r^2}{A_{hex}}\right) / \left(1 + \frac{\delta}{r} + \frac{\delta^2}{2 \cdot r^2}\right)$$

Parameters for the models are not available and must be identified

Material Model Identification with GMS-Parameters

Simberian's USA patent #8577632 and patent pending #14/045,392

DESIGNCON[®] 2014

Measured S-Parameters (Pre-Qualification)

• Final quality metric is acceptable:

Reflection Loss (Single-Ended)

geometrical symmetry: S11=S22=S33=S44, S12=S34, S13=S24, S14=S23 => SQM=100%

Insertion Loss (Single-Ended)

²/₄ **b** geometrical symmetry: S12=S34

Phase Delay (Single-Ended)

 $\frac{2}{4}$ \implies geometrical symmetry: S12=S34

2/10/2014

3

NEXT (Single-Ended)

FEXT (Single-Ended)

TDR Pre-Qualification

Computed with measured S-parameters and 20-ps Gaussian step (100 ps delay added)

A:Measured.Meg6_RTF_6in+.Simulation(1); B:Measured.Meg6_RTF_12in+.Simulation(1); Z, [Ohm]

DESIGNCON[®] 2014

Closer Look at TDR of Launches

Not promising – see more at "Sensitivity of PCB Material Identification with GMS-Parameters to Variations in Test Fixtures", Simberian App. Note #2010_03 – <u>www.simberian.com</u>

Model Identification for FR408 with RTF

A:Measured.difference FR408.Simulation(1); B:Model.6in model.Simulation(1); Magnitude(S), [dB]

6.15 inch segment model with homogeneous dielectric

Wideband Debye model identified with reduced bandwidth GMS-parameters @ 1 GHz

A:Measured.difference FR408.Simulation(1); B:Model.6in model.Simulation(1); Phase Delay, [ns]

DESIGNCON[®] 2014

Model for FR408 with RTF Copper

Odd modes - red and brown lines; Even modes - blue lines;

Model for Megtron 6 with RTF Copper

Magnitude(S), [dB] Phase Delay, [ns] n 1.125 Fitted GM Phase Delay -2.5Dk=3.75 @ 1 GHz ·1.1 -5 $\cdot 1.075$ -7.5 -1.05-10 Difference between Model **GM** Insertion Loss modes is smaller -12.5 Model -1.025-15 LT = 0.0083(a)GHz 35 45 15 20 25 30 50 20 25 35 40 50 10 10 15 30 45 Frequency, [GHz] 24 Dec 2013, 13:50:14, Simberian Inc. 24 Dec 2013, 13:51:59, Simberian Inc. Frequency, [GHz] A:Sm[In1(M1),In2(M1)] *- -; A:Sm[In1(M2),In2(M2)] *-B:Sm[In1(M1),In2(M1)] O- -; B:Sm[In1(M2),In2(M2)] O- -; Odd modes - red and brown lines; Even modes - blue lines;

6.15 inch segment model with homogeneous dielectric

Strips modeled as trapezoidal

Wideband Debye model includes all losses @ 1 GHz

A:Measured.difference_Meq6.Simulation(1); B:Model.6in_model.Simulation(1);

2/10/2014

Model for Megtron 6 with RTF Copper

Odd modes - red and brown lines; Even modes - blue lines;

2/10/2014

DesignCon[®] 2014

Model for Megtron 6 with HVLP Copper

A:Measured.difference_Meg6.Simulation(1); B:Model.6in_model.Simulation(1); Magnitude(S), [dB]

6.15 inch segment model with **homogeneous** dielectric

Strips modeled as trapezoidal

DESIGNCON[®] 2014

Wideband Debye model includes all losses @ 1 GHz

Model for Megtron 6 with HVLP Copper

2/10/2014

Model for N4000-13EPSI with RTF Copper

A:Measured.difference_Nelco.Simulation(1); B:Model.6in_model.Simulation(1);

Magnitude(S), [dB] Phase Delay, [ns] Fitted GM Phase Delay 1.1 -2.5 Dk=3.425 @ 1 GHz 1.075-5 1.05-7.5 1.025-10 **Difference** between -12.5**GM** Insertion Loss modes is very small Model Model 0.975 -15 T=0.011 @ **GH**₇ -17.50.95 10 15 20 25 30 35 40 45 50 10 15 20 25 30 40 45 50 Frequency, [GHz] 24 Dec 2013, 14:46:01, Simberian Inc. 24 Dec 2013, 14:47:20, Simberian Inc. Frequency, [GHz] A:Sm[in1(M1),in2(M1)] *--; A:Sm[in1(M2),in2(M2)] *--; -- Ð B:Sm[ln1(M1),ln2(M1)]; ----- Ð B:Sm[ln1(M2),ln2(M2)]; B:Sm[In1(M1),In2(M1)] O- -; B:Sm[In1(M2),In2(M2)] O- -;

Odd modes - red and brown lines; Even modes - blue lines;

2/10/2014

28

6.15 inch segment model with **homogeneous** dielectric

Strips modeled as trapezoidal

DESIGNCON[®] 2014

Wideband Debye model includes all losses @ 1 GHz

A:Measured.difference_Nelco.Simulation(1); B:Model.6in_model.Simulation(1);

Model for N4000-13EPSI with RTF Copper

2/10/2014

Identified Material Models

• Wideband Debye (WD) with dielectric and roughness losses:

Model Parameters	WD Die	lectric	WD Loss	Tangent		composite/resin
Board Types	Constan	t @ 1 GHz	@ 1 GHz	2		
FR408HR with RTF copper, inhomogeneous	3.95/3.5	5 (3.66)	0.01/0.0	12 (0.0117)	Z	
FR408HR with RTF copper	3.76	(3.66)	0.012	(0.0117)		
Megtron-6 with HVLP copper	3.69	(3.6)	0.0065	(0.002)		1 2005 minites
Megtron-6 with RTF copper	3.75	(3.6)	0.0083	(0.002)		
Nelco N4000-13EPSI with RTF copper	3.425	(3.4)	0.011	(0.008)		Al Dan 2011, (100° Al. Sadawa Inc

 Wideband Debye (WD) dielectric with loss tangent from specs and Modified Hammerstad model (MH) for conductor roughness losses:

Model Parameters	WD Dielectric	WD Loss Tangent	MH Roughness	MH Roughness
Board Types	Constant @ 1 GHz	@ 1 GHz	(SR,rms) (um)	Factor (RF)
Megtron-6 with HVLP copper	3.64 (3.6)	0.002	0.38	3.15
Megtron-6 with RTF copper	3.72 (3.6)	0.002	0.37	4
Nelco N4000-13EPSI with RTF copper	3.425 (3.4)	0.008	0.49	2.3

Values from specifications are provided in brackets for comparison

Preliminary 6-inch Link Analysis

Measured – red lines; Model with long via stubs - brown lines; Model with short via stubs – green lines;

2/10/2014

31

DesignCon[®] 2014

Measured Structures

- Eight-layer board and the striplines are on layer four
- Extracting frequency-dependent model requires stripline-only measurement
 - The S-parameters of the via and pad structures are obtained from field solvers

Via Stub Impact vs. Length

- The reflection and band-limiting impacts of the vias and pads need to be considered
 - Back drilling is necessary to minimize the impacts of via stubs

DESIGNCON[®] 2014

— The via stub length need to be accurately measured ^{2/10/2014}

Back Drilling in FR408 & Nelico Boards

- Significant variations in the back-drilled holes
 - from board to board
 - from via to via within a board (differential pairs)

2/10/2014

Back Drilling in Megtron 6 Boards

- For example, the Megtron 6 board
 - Range of the back-drilled depth
 - 748.10 um 680.90 um = 67.2 um

	Depth (um)
Average	712.45
Max	748.10
Min	680.90
Std. Dev.	25.17

Model and Correlation

Via Stub Length (um)

Board Type	Board Thickness	Pad to trace Via length	Back drill depth	Via stub length
FR 408HR	1470	600	620	250
Nelco N4000 EPSI	1360	540	555	265
Megtron 6 RTF	1400	560	710	130
Megtron 6 HVLP	1400	560	713	127

Board Parameters

	Model Parameters	WD Di	electric	WD Loss Tangent	MH Roughness	MH Roughness
Board Types		Consta	ant @ 1 GHz	@ 1 GHz	(SR,rms) (um)	Factor (RF)
FR408HR with RTF	copper	3.76	(3.66)	0.012	2.0	5.0
Nelco N4000-13EPS	SI with RTF copper	3.425	(3.4)	0.008	0.49	2.3
Megtron-6 with RT	F copper	3.64	(3.6)	0.002	0.37	4
Megtron-6 with HV	LP copper	3.72	(3.6)	0.002	0.38	3.15

• The parameters are used along the S-parameters of via, pad, and remaining stub structure

FR408 and Nelco with RTF

Megtron 6 with RTF and HVLP

Conclusions: Lessons Learned

- Formal quality metrics are useful for pre-qualification of measured S-parameters
- Expected symmetry of manufactured test fixtures was violated by:
 - Fiber weave effect (FR408HR)
 - Manufacturing tolerances (back-drilling on all boards)
 - Probes positioning (or de-embedding? on some boards)
 - Loss of localization by vias at higher frequencies (dependence on stub length)
- These non-idealities reduced bandwidth of GMS-parameters for model identification
- Frequency-continuous models for dielectrics and conductor roughness can be extracted with the reduced-bandwidth GMS-parameters to 50 GHz and beyond
- Inhomogeneity of FR408 and Megtron 6 dielectrics has to be accounted for to increase accuracy and to account for FEXT (not needed for N4000-13EPSI)
- With separate roughness models and loss tangents from specs, identified dielectric constants are closer to specs