

Simberian Confidential

Simbeor Application Note #2017_03, August 2017 © 2017 Simberian Inc.

Identification of dielectric and conductor roughness models with differential lines

Simbeor®: Accurate, Productive, Cost-Effective Electromagnetic Signal Integrity Software...

Outline

Model identification with GMS-parameters

- Step 1: Measure S-parameters for 2 line segment and ensure quality and consistency
- Step2: Extract GMS-parameters
- Step 3: Create model of line segment and compute GMS-parameters
- Step 4: Identify dielectric and conductor roughness parameters
- Create model with two dielectrics (FEXT)
- Appendix: Results with causal Huray-Bracken roughness model

Identification with GMS or SPP techniques

Y. Shlepnev, Broadband material model identification with GMS-parameters, EPEPS 2015.

Y. Shlepnev, Y. Choi, C. Cheng, Y. Damgaci, Drawbacks and Possible Improvements of Short Pulse Propagation Technique, EPEPS 2016.

Step 1a: Measure S-parameters of 2 line segments, import into Simbeor and ensure quality

Quality of S-parameters of 24 inch in and 4 inch segment is good

See more on the import of S-parameters and quality assurance at http://kb.simberian.com/browse_item.php?id=775 http://kb.simberian.com/browse_item.php?id=240

Step 1b: Ensure quality of test fixtures with TDR computed from S-parameters

TDRs of short and long segments are consistent, except the launch area Traces are about 46 Ohm

See more on TDR computation at

http://kb.simberian.com/browse_item.php?id=202

Step 2: Extract GMS-parameters

See details and recommendations at http://kb.simberian.com/browse_item.php?id=846

Step 2: Extract GMS-parameters – plot Magnitude and Phase Delay

Step2: Extract GMS-parameters – use options to fix problems

Step 3a: Compute GMS-parameters of line segment – cross section

Step 3b: Compute GMS-parameters of line segment – model 20 inch diff strip segment

Step 3c: Plot GMS-parameters of the model

Elements GMS[1,3] – odd or differential mode transmission, GMS[2,4] – even or common mode transmission Mode M1 is odd, mode M2 is even

The first adjustment can be done without SiTune – from the Phase Delay we can see that the Dk and LT should be much lower (4.2 and 0.02@ 1 GHz are specified as the starting point)

Step 4a: Manually adjust Dk and LT to have model GMS-parameters closer to measured

For instance, adjust Dk to 3.7 and LT to 0.005 and re-run the analysis

Step 4b: Manual adjustment of resistivity

RR=1.25 gives better DC match, but this is questionable adjustment!

Step 4c: Bring model parameters into SiTune for the optimization

Step 4c: Set up goal for Dk

c) From 1 to max b) Match Phase Delay to a) For GMS odd mode frequency (20 GHz Measured GMS-par. transmission parameter in this case) × Simulat Variable Value # Element Value Simulation/Polyline С Step GoalType А В Fmin, GHz Fmax, GHz We Operator Model. 5 1 S[1,3] Simulation Measured.diff.Simulation(1) 20. Model:Materials -> FR4 -> RelativePermittivity 3.7 PhaseDelay none none none 1. Add Row Model:Materials -> FR4 -> LossTangent 5.e-3 0 Model:Materials -> Copper -> RelativeResisti... 1.25 0 Model:Materials -> Copper -> SR1 0. [um] 0 Model:Materials -> Copper -> RF1 2. 0 $\langle \rangle$ < + Step: 5 Auto-S 3.7 % Min: 1.e-10 Max: Optimize d) Click "Optimize" button

Optionally, check "Same Thread Simulation" in Solution -> Configuration -> Optimizer, to run all simulations during the optimization in one thread (each simulation will be parallelized if necessary)

olution Configuration					?	×
Output Models	Solvers General			Rational Compactor		
RCM Passivity	Optimizer Mess		Messa	ge	Matrix	
Step Chang	ge Limit: [1.002		[1., 1.5]		
Maximal Number of Steps:		5000		[1, 100000]		
Minimal Error: 0.0001				[0., 1000.]		
Cost Fi	unction:	1		[-4, 4]		
Step Change Algorithm:		2		[1, 2]		
Normalized Group Delay Scale:		10		[1., 1000000000.]		
Magnitude Scale:		10 [1.		[1., 1000	., 1000000000.]	
Number of Curves To Keep:		20	[0, 1000]		1	
Auto Freeze Lattice Box Before Optimization						
Same Thread Simulations and Optimization (as before version 2017)						
Tip: Change configuration only if optimizer hangs or recommended by support.						

Step 4c: Dk optimization result

Dk value matching measured and simulated GMS Phase delay

1	🕽 🎄 Simbeor - [GMS - Graph View]	* – 🗆 X					
1	Eile Wigards Edit View Graph View Action Job Tools Window Help	_					
1	- D La 🕼 🗰 🎍 🗳 🐸 📾 🖮 🗠 🗢 A 🐿 📾 🕪 X 💕 🔠 🗮 🤹 🥸 🕼 🔍 🐨 🕹 🕲 🖏						
	◯⊕◈द€ ◙ ፼፼፼፼ዹዹ 難⋈ ፟ቘቜቘቜ ⊠≋≅₩ቘቜ * %≋≞≝ቒ≞≈ ⊮₭<*≞						
<u>ب</u>	#●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●						
So	Solution Explorer - StepByStepDiff: "C:\Repository\Simboo\D 🗙 🗙						
	StepByStepDiff: "C:\Repository\Simboo\Demos\MaterialIder Simulation to Ture or Optimize Variable Value Variable Value Value Step	stor GoalType Simulation/Polyline A B C					
j Ė	Model/segment_Juni.smulaton(1) Model/segment_Juni.smulaton(1) Model/segment_Juni.smulaton(1) Add Row A	Simulation Measured.dlff.Simulation(1) none none none					
)F	Generation Control Contro						
))C	We define works and the second s						
5	e 🕅 Simulation(1)	>					
2°):	- Options + GMS						
2	BV: FrequencySweeps: FU=[GHz] & diff (2 segment_20in) Ferdina to Compare the segment_20in) For the segment_20in (2 segment_20in) for the segment_20in) for the segment_20in (2 segment_20in) for the se	4 Þ ×					
	A:Measured.diff.Simulation[1]; B:Model.segment_20in.Simulation[1];						
. L	Magnilude(S). (dB)	Phase Delay, [ns]					
15	Aterials: T=201°CL	intermediate results					
	Copper", RR=1.25						
	12 "FR4", Dk=3.63305, LT=0.005, PLM=WD, Dk(0)=3.8	3.5					
		+ 3.375					
đ	Han segment_20in						
	🕴 🕂 LinearNetworkData: LU=[mil], Truncation=1.0[mil						
	B B Multiport Topology: 2 inputs, 4 ports						
e	theres simulation (1): 100al 1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20					
•		Frequency, [GHz]					
	GMS(MultiportParameters vs. Frequency)	n1(M1),in2(M1)] · ; · · B:(3);Sm[in1(M1),in2(M1)] · ; n1(M1),in2(M1)] · · · · : · · · · · B:(8);Sm[in1(M1),in2(M1)] · · · · :					
<	● B1(9)Sm[Int[M1]Jh2[M1]] ○, ● B1(10)Sm[Int[M1]Jh2[M1]] ○, ● B1(1)Sm[Int[M2]Jh2[M2]] ○, ● B1(2)Sm[Int[M2]Jh2[M2]] ○, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] ○, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2]Jh2[M2]] O, ● B1(2)Sm[Int[M2	n1(M2),In2(M2)] •;• B:(3):Sm[In1(M2),In2(M2)] •;					
	🔴 Main 🌉 Circuits 🛄 Simulations 💽 Results — 😶 B:(4):Sm(ln1(M2),Ln2(M2)] • B:(5):Sm(ln1(M2),Ln2(M2)] • B:(5):Sm(ln1(M2),Ln2(M2)] •	n1(M2),In2(M2)]					
	B:(9)Sm(In1(M2/Ln2(M2)) U = -; ================================						
×	X Model.strip.Simulation()::Info: <building 14:24:11="" at="" model="" simulation=""> Model asrmant 2010: Simulation():Lifect Adverging to SMatrie (control multicort parameters) in "Model" input so</building>	Peak Me Wall Time					
Ţ\$	X Model.segment_2010.isunlation(1)::info: OPTIMIZER: Step #12, Goal #1, Error 8.2487e-05, Total Error 8.2487e- h Simbeor 0% 1 1% 0.0539	0 K 5:35:10					
1 ⁶	📸 Model.segment_20in.Simulation(1)::Info: OFTIMIZER: Min error 8.23487e-005 has been reached at iteration 12 🔤 🖥 Model.segment_2 🏠 100% Done 0 0% 0.01:12	0 K 0:01:13					
5	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	0 K 0:00:00					
- Eo	S TraceLog ErrorLog	0 K 0:00:00					
Fro	Frequency.[GH2]: Magnitude(5).[dB]: Plase Delay.[ns]: FPS: 0	A License					
1							

Final RMS Error

Step 4d: Set up goad for LT

d) Run Optimization, Clean Curves

Step 4e: Identify conductor roughness model

d) Run Optimization, Clean Curves

Step 4e: Analysis of preliminary results

To improve accuracy, repeat step 4c

9/11/2017

Simberian

lectromagnetic Solution

Results are acceptable, but not perfect

Higher measured dispersion in Phase Delay indicates that LT should be larger (dispersion) The problem is with the matching RR at DC that resulted in larger value of resistance RR=1.25 – this is questionable result (resistance 25% of annealed copper)! Solution – set RR back to 1 (annealed copper) and redo the matching...

New results with RR=1

What about the even mode?

Problem: Model contains only one dielectric – cannot match simultaneously odd and even mode – though, it may be acceptable if FEXT is not large Solution: Create model with the additional layer of dielectric around the strips – see next slides...

Model with inhomogeneous dielectric

Predominantly resin

	85-L3-4inch	85-L3-24inch	
Parameter	Avg.	Avg.	
а	5.66	5.67	
b	7.41	7.35	
с	6.51	6.58	
d	6.67	6.74	
е	0.65	0.65	
f	5.80	5.82	
g	5.15	5.16	

Simultaneously match odd and even mode GMS-parameters

a) Use parameters identified for homogeneous dielectric as the starting point

b) Bring relative permittivities of the base material (FR4) and fill c) Alternatively set goals for Phase delays for 2 modes and optimize

Final dielectric models: Wideband Debye FR4 Dk=3.54, LT=0.0058 @ 1 GHz; Resin Dk=3.76, LT=0.0058 @ 1 GHz; Copper roughness model: Groiss SR=0.19 um, RF=2.75

Compare raw single-ended S-parameters for 24 inch segment

24-inch segment model with ideal 100 Ohm connector model

Compare raw differential S-parameters for 24 inch segment

24-inch segment model with ideal 100 Ohm connector model

Compare TDR for 24 inch segment

Requires further investigation - see appendix...

Conclusion

- Always identify or validate dielectric, conductor and conductor roughness models
- Use of GMS-parameters is simplest and most accurate technique for the material model identification
- Differential strip is useful to identify dielectric inhomogeneity and fit 2 dielectric models simultaneously
- Use homogeneous dielectric if no FEXT observed or FEXT is not a part of design
- Use two dielectric models to match phase delay of two modes – it leads to match in the FEXT

Appendix: Causal Huray-Bracken roughness model

$$K_{sr} = 1 + \sum_{k} \left(\left(RF_{k} - 1 \right) \cdot \left(1 + \left(1 - i \right) \frac{\delta_{s}}{2r_{i}} \right)^{-1} \right) \quad \delta_{s} = \sqrt{\frac{1}{\pi \cdot f \cdot \mu \cdot \sigma}} \qquad Z_{rough} = K_{sr} \cdot (1 + i) \cdot \delta_{s}$$

RFi - roughness factor, defines maximal growth of losses due to all balls with radius ri; ri – ball radius (SRi parameter in Simbeor);

J. E. Bracken, A Causal Huray Model for Surface Roughness, DesignCon 2012

Appendix: Results with causal Huray-Bracken model

- a) Use parameters identified for inhomogeneous dielectric as the starting point, set LT to 0.002 (specs);
- b) Optimize roughness model parameters (SR1, RF1), to match GMS IL from 2 to 20 GHz
- c) Adjust Dk of FR4 and Resin, to match the even and odd mode Phase Delay

Final dielectric models: Wideband Debye FR4 Dk=3.465, LT=0.002 @ 1 GHz; Resin Dk=3.63, LT=0.002 @ 1 GHz; Copper roughness model (RR=1): Huray-Bracken SR=0.2 um, RF=8.134 If copper relative resistance is adjusted to RR=1.2, Huray-Bracken model is SR=0.2, RF=7.75

Appendix: Validation with causal Huray-Bracken model

24-inch segment model with ideal 100 Ohm connector model

Appendix: Validation with causal Huray-Bracken model

24-inch segment model with ideal 100 Ohm connector model

Appendix: TDR for 24 inch segment with Huray-Bracken roughness model

Appendix: TDR for 24 inch segment with Huray-Bracken roughness model

TDR can be used to validate the relative resistivity in addition to matching GMS IL at the lowest frequency...

Simberian Inc.

- Mission
 - Build accurate, easy-to-use, and cost-effective electromagnetic software for high-speed electronic design automation
- □ Incorporated in USA on February 28, 2006
 - Founder and President Yuriy Shlepnev
 - PhD in in computational electromagnetics
 - 25-years experience in building electromagnetic software
- Development in Westlake Village, USA, St. Petersburg and Voronezh Russia

Location and contacts

- Corporate office: 2629 Townsgate Rd. Sute #235, Westlake Village, CA 91361 USA Tel/Fax +1-702-876-2882, skype simberian
- Web: <u>www.simberian.com</u>
- Support knowledge base <u>www.kb.simberian.com</u>

