Simbeor Application Note #2007_05, September 2007 © 2007 Simberian Inc.

De-compositional analysis of a connector breakout with Simbeor and HyperLynx

Simbeor: Easy-to-Use, Efficient and Cost-Effective...

Introduction

- Show step-by-step how to use S-parameters models of discontinuities generated with Simbeor in a system-level analysis
- Use HyperLynx 7.7 with Eldo from Mentor Graphics corporation for the system-level analysis

Problem statement

Compute transmission of 10 Gbps differential signal through the following transition from 2 connectors to differential line

Stackup. Design: Diff_Via_test.hyp. HyperLynx BoardSim V7.7

Solution steps

- 1. Decompose structure into three simple discontinuities
- 2. Create model for coaxial to microstrip line transition
- 3. Create model for single microstrip line to differential microstrip transition
- 4. Create model for differential microstrip line transition through two pads
- 5. Create HyperLynx schematics of the complete problem with S-parameter models
- 6. Simulate transition of 10 Gbps signal through the structure

Step 1: Decompose structure into simple discontinuities or components

© 2007 Simberian Inc.

Step 2: Create model of coaxial to microstrip line transition with Simbeor

- Export StackUp structure from HyperLynx to Simbeor project Breakout (available only in HL 8.0 pre-alpha)
- Create solution BreakOutElements
- Add project Breakout
- Add additional layers on top of the stackup to simulate the coaxial connection
 - Add layer filled with 0.5 mm of air
 - Add layer of Signal type "SMAPlane"

Coaxial to microstrip line transition geometry

- Add circuit 31K10A to simulate breakout 32K10A-40ML5
- Define geometry object by object
- Define TLine Input (port 1) and component port 2 to simulate the coaxial connection

Input to simulate connection to micro-strip line (z-port at the edge of pad)

Coaxial to microstrip line transition geometry elements

Lattice box definition for coaxial to microstrip transition

LatticeBox LatticeAxisY Ax Auto Lattice Parameters	xis Z Sidewall Model LatticeAxisX	Cell size def	Fined as 0.3 mm (6.15, 6.15)
Cell Size: 0.3	[mm] atticeBox	<u>?×</u>	
Auto Detect Area Size: 12.3	Auto Lattice Parameters	LatticeAxisX Sidewall Model	Pinput 1
Auto Detect Area Origin: -6.15	Cell Size: 0.3	[mm]	(6.15, -6.15) , Simberian Inc.
Adjust lattice and simulation are have all strip edges as close to	Auto Detect Area Size: 12.3 Auto Detect	[mm]	All other parameters set to

Simulation setup for the coaxial to microstrip line transition

Coaxial to MSL transition simulation results

The structure is oversized and not matched to 50-0hm

Overall the structure behaves as low-pass filter

Output Results into Touchstone file Breakout_32K10A_Simulation1.s2p

Step 3: Create model of single microstrip line to differential microstrip transition

- Export stackup from HyperLynx into SingleToDiff Simbeor project (or copy stackup from the previous project)
- Add small layer on top to increase accuracy of analysis the solder mask with the collapsed metal model

Define geometry of single microstrip line to differential microstrip transition

- Add circuit SingleToDiff
- Define two single t-lines with inputs
- Define one differential line with inputs
- Add two polygons to simulate two 45-degree segments

Reference plans shifted

toward discontinuity

(de-embedding)

Simulation setting for single microstrip line to differential microstrip transition

Simulation results for single microstrip line to differential microstrip transition

Output Results into Touchstone file SingleToDiff_SingleToDiff_Simulation1.s4p

10/7/2008

Step 4: Create model of differential microstrip line transition through two pads

- SingleToDiff Project can be used to simulate the structure
- Create DiffPass circuit

10/7/2008

Define geometry elements

Differential inputs with phase ref. plane shifted to the pads edges

Lattice Box setup for differential microstrip line transition through two pads

Use 2 cells per strip width and	LatticeBox ? X
increase default distance to sidewalls with the two auto-lattice	LatticeAxisY Axis Z Sidewall Model Auto Lattice Parameters LatticeAxisX
parameters	Box Auto Fit: TestBenchFit
	Min Cells Per Width (Nmin): 1 1,2, (Nmin<=Nopt)
(#10105-3.0105)	Optimal Cells Per Width (Nopt): 2 1,2, (Nmin<=Nopt<= Nmax)
	Max Cells Per Width (Nmax): 64 1,2, (Nmax>= Nopt)
	Sidewall Margin Multiplier: 8 0,1,
	Line Segment Length Multiplier: 4 1,2,
	Auto Lattice Parameters are required only if simulation area and/or cell size are not defined (or Lattice Box is not completely defined).
	Automatically defined lattice does not guaranty accuracy. Use simulation options to refine the simulation mesh to increase the accuracy.
	All changes made here have effect only at the geometry initialization stage.
γ (*4.5125), •2.2125) ••πρωτρωφοικ 2	Set As Solution Default
09 Sep 2007, 16:29:12, Simberian Inc.	OK Cancel

Simulation setting for differential microstrip line transition through two pads

Options	? X Options	<u>?</u> ×
Options Problem Meshing Algorithm Debug Primary Cartesian Grid Lattice Cell Dividers: Reduce the original lattice cell sizes by values defined here. The larger the divider the more accurate but slower the simulation. Y: 1 [1,2, Reduce the original lattice cell sizes by values defined here. The larger the divider the more accurate but slower the simulation. Grid Control Parameters: Min Cells Per Wavelength: 4 [4,5, Max Cells Per Wavelength: 500 [4,5, Super Grid:	? X Options Problem Meshing Algorithm Debug Image: Collapse Thick Metal Layers Check to accelerate simulation of structures composed of trace or strips with large width to thickness ratio. Image: Ignore Losses In Metals And Dielectrics Check to accelerate preliminary analysis of lossy structure. Image: Use Current Variables in Plane Layers If checked - metal in plane layers is meshed instead of meshing cut-outs in metal (may slow down the simulation). Cover Distance To Max Trace Width Ratio: 20 [0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	? ×
OK Can	ancel OK OK	ancel

Simulation results for differential microstrip line transition through two pads

SingleToDiff.DiffPass.Simulation1.S[1.1] SingleToDiff.DiffPass.Simulation1, S[1,2] SingleToDiff.DiffPass.Simulation1.S[1.3] SingleToDiff.DiffPass.Simulation1.S[1.4] Magnitude(S), [dB] Angle(S), [deg] 150 -12.5 100 -25 50 -37.5 0 -50 -50 -62.5 -100 -75 -150 2.5 7.5 10 12.5 15 17.5 20 09 Sep 2007, 16:35:00, Simberian Inc. Frequency, [GHz]

Resonance is observed around 11.5 GHz

Output Results into Touchstone file SingleToDiff_DiffPass_Simulation1.s4p

Step 5: Create HyperLynx schematics

Electromagnetic Solutions

Step 6: Simulate transition of 10 Gbps signal through the structure

10/7/2008

© 2007 Simberian Inc.

Conclusion on the breakout design

- The large breakout area might be a problem for 10 Gbps signal – it filters out the high-frequency harmonics
- Optimization of the breakout area or different connection geometry is required
- Differential microprobes have to be considered as an alternative to the SMA connector

Conclusion

- De-compositional analysis is the fast and accurate way to estimate performance of a serial data channel
- S-parameter models of discontinuities generated with a 3D full-wave solver have to be used to increase accuracy of the system-level signal integrity analysis tools

Solutions and contact

- Simbeor solution files and HyperLynx schematic file are available for download at:
 - http://www.simberian.com/AppNotes/Solutions/BreakOutAnalysisSimbeorAndHL_2007_05.zip
- Send questions and comments to
 - General: info@simberian.com
 - Sales: <u>sales@simberian.com</u>
 - Support: <u>support@simberian.com</u>
- Web site <u>www.simberian.com</u>

10/7/2008

