

Minimization of Reflection from AC Coupling Capacitors

Simbeor®: Easy-to-Use, Efficient and Cost-Effective electromagnetic software...

Property of Simberian Inc.

- Copyright © 2008 by Simberian Inc., All rights reserved.
 - THIS DOCUMENT IS CONFIDENTIAL AND PROPRIETARY TO SIMBERIAN INC. AND MAY NOT BE REPRODUCED, PUBLISHED OR DISCLOSED TO OTHERS WITHOUT PERMISSION OF SIMBERIAN INC.
- Simberian® and Simbeor® are registered trademarks of Simberian Inc.
 - Other product and company names mentioned in this presentation may be the trademarks of their respective owners.

Overview

- Introduction
- De-compositional analysis of a channel with AC decoupling capacitors
- Building models for AC capacitor mounting structures for a single-ended channel
- Minimization of reflection from the mounting structures with cut-outs in the reference plane
- Analysis of simple channels with AC coupling capacitors
 Conclusion

Introduction

- Serial multi-gigabit data channels usually have capacitors connected in series in micro-strip lines (AC coupling capacitors) to pass through the high-frequency signals content and to allow different DC supply for a driver and receiver at the same time
 - Mounting structures of such capacitor and capacitors themselves are discontinuities and reflection from them have to be minimized to improve signal quality
 - 3D electromagnetic analysis is required to estimate and to minimize the reflection from the AC coupling capacitors and mounting structures
- This example is follow-up to App Note #2008_02
 - Demonstrates how to minimize reflection from the AC coupling capacitors using cut-outs in the reference plane
 - Demonstrates how to build a system-level model of a simple channel with AC coupling capacitors within Simbeor environment
- Simbeor 2008 built on August 25th 2008 is used to generate the results

De-compositional analysis of a serial multigigabit channel with AC coupling capacitors

Materials and stack-up for analysis of the capacitors mounting structures

- Solution Simbeor Solutions/ PCB_MCM/ AC_CouplingCaps/ AC_CouplingCaps.esx created for this investigation
- Simple 4-layer stackup with two signal layers and two plane layers
- Stackup is extended to simulate connection of the capacitor slightly above the board surface

Single-ended channel – transmission line (circuit SingleMSL)

8 mil wide strip on 4.5 mil substrate with Dk=4.2, LT=0.02 at 1 GHz and wideband Debye dielectric model

Use Help > Tutorials > Tutorial 2 to learn how to build broadband RLGC(f) models for transmission line

10/7/2008

Short-circuit experiment with 0402 capacitor footprint (SCSingle)

- Capacitor in micro-strip line with 8 mil wide trace
- Allows us to estimate the minimal possible reflection
- May be used to do the through calibration of the internal ports

Short-circuit experiment with 0402 capacitor footprint with cut-out (SCSingle2)

Cut-out 60 mil by 19 mil in the reference plane reduces the reflection loss

Short-circuit experiment with 0603 capacitor footprint (SCSingle0603)

- □ The larger the footprint the larger the minimal possible reflection loss
- Impedance of the actual capacitor will make reflection worse

Short-circuit experiment with 0603 capacitor footprint with cut-out (SCSingle0603_2)

Cut-out 50 mil by 68 mil in the reference plane considerably reduces the reflection loss

Series internal port to connect 0402 capacitor (SPSingle and SPSingle2)

 Series port is the only option in case of cut-out of the reference plane below the capacitor (no reference below the pads to construct parallel ports)

Series internal port to connect 0603 capacitor (SPSingle0603 and SPSingle0603_2)

 Series port is the only option in case of cut-out of the reference plane below the capacitor (no reference below the pads to construct parallel ports)

10/7/2008

Analysis of a simple data channel with AC coupling capacitor (circuits in the project Channels)

- □ Capacitor model: C=100 nF, ESR=1 mOhm, ESL= 100 nH
- Capacitor is placed closer to the receiver port 2

We will use broadband RLGC(f) model of 50-Ohm micro-strip line and extracted S-parameters of the capacitor mounting structure

10/7/2008

Simbeor models of the simple channel with 0402 capacitor

- We can see considerable reduction of the channel reflection loss
- S-parameter model of the complete channel can be used in a system-level simulator

Simbeor models of the simple channel with 0603 capacitor

- Considerable reduction of losses in the channel can be observed
- Without cut out a similar channel with additional via-hole discontinuities may fail because of resonances between the mounting structure and via-holes

Conclusion

- Simple examples of Simbeor application for extraction of electromagnetic models and for minimization of reflection losses from AC coupling capacitors are provided
- Optimal geometry of the mounting structure practically removes reflections from 0402 capacitors and considerably reduces the reflection loss from 0603 capacitors
- Electromagnetic models of the mounting structures can be used
 - For accurate modeling of multi-gigabit serial data channels
 - For identification of the models for the capacitors by comparison of simulation and measurement results
- Model of a complete channel in frequency domain is convenient to estimate insertion and reflection losses and can be used as a blackbox model in a system-level simulator
- Analysis and loss minimization for differential channels is similar
- Setting up all simulations and model building with Simbeor took approximately 1 hour

Solutions and contact

- Simbeor solution file is in Simbeor Solutions/ PCB_MCM/ AC_CouplingCaps/ AC_CouplingCaps.esx
 - It contains all electromagnetic models and linear circuit analysis
- Send questions and comments to
 - General: info@simberian.com
 - Sales: <u>sales@simberian.com</u>
 - Support: <u>support@simberian.com</u>
- □ Web site <u>www.simberian.com</u>

